
1

Exploring Frequency-Inspired Optimization in
Transformer for Efficient Single Image

Super-Resolution
Ao Li, Le Zhang, Member, IEEE , Yun Liu, and Ce Zhu, Fellow, IEEE

Abstract—Transformer-based methods have exhibited remarkable potential in single image super-resolution (SISR) by effectively
extracting long-range dependencies. However, most of the current research in this area has prioritized the design of transformer
blocks to capture global information, while overlooking the importance of incorporating high-frequency priors, which we believe
could be beneficial. In our study, we conducted a series of experiments and found that transformer structures are more adept at
capturing low-frequency information, but have limited capacity in constructing high-frequency representations when compared to
their convolutional counterparts. Our proposed solution, the cross-refinement adaptive feature modulation transformer (CRAFT),
integrates the strengths of both convolutional and transformer structures. It comprises three key components: the high-frequency
enhancement residual block (HFERB) for extracting high-frequency information, the shift rectangle window attention block (SRWAB)
for capturing global information, and the hybrid fusion block (HFB) for refining the global representation. To tackle the inherent
intricacies of transformer structures, we introduce a frequency-guided post-training quantization (PTQ) method aimed at enhancing
CRAFT’s efficiency. These strategies incorporate adaptive dual clipping and boundary refinement. To further amplify the versatility
of our proposed approach, we extend our PTQ strategy to function as a general quantization method for transformer-based SISR
techniques. Our experimental findings showcase CRAFT’s superiority over current state-of-the-art methods, both in full-precision and
quantization scenarios. These results underscore the efficacy and universality of our PTQ strategy. The source code is available at:
https://github.com/AVC2-UESTC/Frequency-Inspired-Optimization-for-EfficientSR.git.

Index Terms—Super-resolution, transformer, frequency priors, quantization, low-bit
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1 INTRODUCTION

S INGLE image super-resolution (SISR) has garnered sig-
nificant attention in recent years due to its promis-

ing applications across various fields such as enhancing
surveillance videos and medical images [1], [2], restoring
old photographs [3], [4], and enabling efficient image trans-
mission [5]. Despite its widespread applications, SISR poses
a challenging problem: reconstructing a high-resolution im-
age from a low-resolution counterpart involves a complex
mapping with many possible high-resolution outputs.

In recent years, deep learning has shown remarkable
success in SISR [6], [7], [8], thanks to its powerful ex-
pressive capabilities. Specifically, the introduction of con-
volutional neural networks (CNNs) that employ innovative
architectures like residual and dense connections has signifi-
cantly improved reconstruction accuracy [9], [10]. Moreover,
integrating attention mechanisms, which effectively com-
bine spatial and channel information, has further advanced
SISR [11], [12], [13], [14]. More recently, the emergence of
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transformer architectures has been pivotal, demonstrating
their superior ability to capture long-range dependencies
and setting new benchmarks in the SISR field [3], [15], [16],
[17], [18]. However, despite these significant advancements,
existing methods in SISR are still lacking. Firstly, while these
methods have effectively integrated off-the-shelf advanced
network structures, such as designing transformer blocks
for capturing global information or complex convolutional
structures for extracting discriminative features, they often
overlook the impact of frequency information in the input
image on the overall performance of different architectures.
Therefore, we believe that a comprehensive analysis from
the frequency domain could be beneficial. Secondly, the
computational demands of these transformer-based SISR
methods pose a significant challenge to their practical de-
ployment, particularly in scenarios with limited computa-
tional resources.

Our preliminary work, presented at ICCV 2023 [19], has
initiated efforts to address the first challenge by investi-
gating the impact of frequency information on the perfor-
mance of both CNN and transformer structures in SISR.
We achieve this by discarding different ratios of frequency
components from the input image and observing the cor-
responding performance changes. Our empirical findings
indicate that transformer models exhibit limited capability
in constructing high-frequency representations when com-
pared to CNNs. To mitigate this gap, we introduce the
cross-refinement adaptive feature modulation transformer
(CRAFT), an innovative model that effectively harnesses the

https://github.com/AVC2-UESTC/Frequency-Inspired-Optimization-for-EfficientSR.git
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TABLE 1
Comparison of training efficiency among various QAT and PTQ

quantization methods for the EDSR model, where “FP” denotes the
full-precision model, and “GT” indicates the use of ground truth.

Notably, the † symbol emphasizes that our PTQ method is specifically
designed for our CRAFT and features an exceptionally low training cost.

Model Type Data (Resolution) GT BatchSize Iters Run Time

EDSR [20] FP 800 (2048× 1080) ✓ 16 15,000 240×
PAMS [21] QAT 800 (2048× 1080) ✓ 16 1,500 24×
FQSR [22] QAT 800 (2048× 1080) ✓ 16 15,000 120×

CADyQ [23] QAT 800 (2048× 1080) ✓ 8 30,000 240×
DAQ [24] QAT 800 (2048× 1080) ✓ 4 300,000 1200×
DDTB [25] QAT 800 (2048× 1080) ✓ 16 3,000 48×

PTQ4SR [26] PTQ 100 (2048× 1080) ✗ 2 500 1×
Ours† PTQ 100 (120× 120) ✗ 2 500 1×

strengths of both CNNs and transformers. It comprises three
key components: the high-frequency enhancement residual
block (HFERB) for extracting high-frequency information,
the shift rectangle window attention block (SRWAB) for
capturing global information, and the hybrid fusion block
(HFB) for refining the global representation. In this paper,
we enhance the analysis by delving deeper into insights
and offering more intuitive explanations, thereby providing
a clearer understanding of the frequency-dependent perfor-
mance in both CNN and transformer structures. Further-
more, we illustrate the superiority of our strategies in re-
constructing high-frequency components compared to other
state-of-the-art methods. These findings not only reinforce
our prior contributions but also broaden the scope and
applicability of our research in the realm of image super-
resolution.

To further enhance the efficiency of CRAFT and tackle
the second challenge, in this paper we adopt quantization
strategies that compress the network into low-bit repre-
sentations for both weights and activations, while main-
taining the original architecture. Two primary quantiza-
tion approaches are considered: quantization-aware training
(QAT) and post-training quantization (PTQ). QAT typi-
cally demands large datasets and substantial computational
resources, whereas PTQ offers a more efficient solution,
requiring only a small number of unlabeled calibration
images (100 samples) for rapid deployment across various
devices, as depicted in Table 1. More specifically, we calcu-
late the “Run Time” of different quantization methods by
multiplying the batch size with the number of iterations (
“batch size × iterations”). Compared to the QAT method,
PTQ necessitates fewer inferences, leading to greater gains
in training efficiency. Additionally, in terms of the actual
number of the required training samples, PTQ also demands
far fewer samples than QAT.

Given our primary focus on devising efficient SISR
methods for both training and inference, we introduce
a frequency-guided PTQ strategy tailored specifically for
CRAFT. This strategy involves imposing additional fre-
quency constraints on HFERB features to safeguard the
preservation of high-frequency information. Our approach
integrates a dual strategy, wherein feature boundaries are
adaptively calibrated and refined using a limited set of
calibration images, thus enhancing quantization efficacy.
Furthermore, considering that the existing PTQ super-
resolution method, as outlined in [26], primarily concen-
trates on CNN-based architectures, there exists a notable

absence of PTQ implementation for transformer models.
Consequently, we expand our PTQ strategy to a more gen-
eral form. This strategy guarantees the retention of high
image quality, even with restricted representations as low
as 4 bits, signifying a noteworthy breakthrough in SISR.

Our main contributions are summarized as follows:

• Frequency-perspective Analysis: We study the im-
pact of CNN and transformer structures on perfor-
mance from a frequency perspective and observe
that transformer is more effective in capturing low-
frequency information while having limited capacity
for constructing high-frequency representations com-
pared to CNN.

• Frequency-aware SR Framework: We employ par-
allel structures to extract varied frequency features:
HFERB for high-frequency information essential for
SISR, and SRWAB for global information. Our fusion
strategy leverages HFERB as high-frequency prior
and SRWAB output as key and value for inter-
attention, enhancing overall performance.

• Frequency-guided PTQ Strategy: We present a
frequency-guided PTQ strategy tailored specifically
for CRAFT. This involves imposing a frequency con-
straint on HFERB, along with an adaptive dual-
phase calibration and refinement process. Moreover,
we extend our PTQ strategy to cover transformer-
based SISR methods, thus enhancing their practical
applicability.

• Comprehensive Experimental Validations: We con-
duct meticulous experiments, including thorough
ablation studies and comparative analyses across
multiple datasets, to affirm the effectiveness of our
techniques and scrutinize the impact of quantization
on SISR outcome fidelity.

2 RELATED WORKS

2.1 CNN-based SISR

Since the pioneering work SRCNN [6] has achieved sig-
nificant progress in SISR, various CNN-based works have
been proposed. Kim et al. [27] presented an SR method
using deep networks by cascading 20 layers, demonstrat-
ing promising results. Building upon this, Lim et al. [20]
introduced the enhanced deep super-resolution (EDSR) net-
work, which achieved a significant performance boost by
removing the batch normalization layer [28] from the resid-
ual block and incorporating additional convolution layers.
Ahn et al. [29] designed an architecture with an increased
number of residual blocks and dense connections, further
improving the SR performance. In pursuit of lightweight
models, Hui et al. [30] proposed a selective fusion approach,
employing cascaded information multi-distillation blocks
to construct an efficient model. Li et al. [31] introduced a
method involving predefined filters and used a CNN to
learn coefficients, which were then linearly combined to ob-
tain the final results. Sun et al. [32] proposed a hybrid pixel-
unshuffled network (HPUN) by introducing an efficient and
effective downsampling module into the SR task.
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(a) Frequency attention bias of different structures.
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(b) Effectiveness of reconstructing high-frequency information.
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(c) Procedure for dropping high-frequency components.

Fig. 1. Influence of high-frequency information on the performance of CNN and transformer architectures. Dashed and solid lines correspond to
CNN and transformer methods, respectively. (a) With an increase in the high-frequency drop ratio, transformer models exhibit a smaller change
in PSNR compared to CNN, suggesting their superiority in capturing low-frequency information. (b) As the high-frequency drop ratio increases,
transformer models show a more pronounced change in PSNR compared to CNN, indicating their limited ability to reconstruct high-frequency
information from low-frequency.

2.2 Transformer-based SISR
Liang et al. [3] proposed SwinIR, a robust baseline model
for image restoration, leveraging the Swin Transformer [33].
CAT [15] modified the window shape and introduced a
rectangle window attention to obtaining better performance.
Chen et al. [16] proposed a pre-trained image processing
transformer and showed that pre-trained mechanism could
significantly improve the performance for low-level tasks.
Li et al. [17] comprehensively analyzed the effect of pre-
training and proposed a versatile model to tackle differ-
ent low-level tasks. Lu et al. [18] proposed a lightweight
transformer to capture long-range dependencies between
similar patches in an image with the help of the specially
designed efficient attention mechanism. Zhang et al. [34]
introduced a shift convolution and a group-wise multi-
scale self-attention to reduce the complexity of transform-
ers. HAT [35] introduced a hybrid attention mechanism to
enhance the performance of window-based transformers.

2.3 Quantization in SISR
Quantization plays a critical role in compressing and speed-
ing up models, primarily divided into Quantization-aware
Training (QAT) and Post-Training Quantization (PTQ). QAT
fine-tunes weights and activations during training, which
can enhance model performance despite requiring more
training time. Ma et al. [36], explored the potential of
weight binarization in SR, demonstrating the possibility
of extreme compression. Similarly, BAM [37] introduced

a bit accumulation mechanism, and PAMS [21] developed
a learnable, layer-wise symmetric quantizer, both improv-
ing the precision of quantization processes. Aiming for
further model compression, FQSR [22] introduced a full-
quantization approach for all layers of the SR network,
using a learnable interval to retain performance. Addi-
tionally, DAQ [24] examined a channel-wise distribution-
aware quantization technique, and DDTB [25] presented a
dynamic, dual trainable clip-value quantizer, effective for
2-4 bit model compression.

In contrast to QAT, PTQ offers a fast and efficient way
to quantization, only needing a small set of calibration data.
This method is especially useful when there is limited access
to the complete dataset or when quick model deployment
is needed. PTQ4SR [26] uses a two-step quantization ap-
proach specifically designed for the dynamic requirements
of SR tasks. Yet, there is a notable gap in quantization
methods, especially for transformer-based SR models. Our
PTQ method can be expanded to a general quantization
strategy for transformer-based SISR methods, promoting the
development of more efficient and scalable SR solutions.

3 FREQUENCY-PERSPECTIVE ANALYSIS

In this section, we explore the performance of CNNs and
transformers from a frequency perspective. To investigate
the impact of different frequencies on these architectures,
we conducted two sets of experiments using four commonly
used benchmarks, as detailed in Sec. 3.1. Additionally, we
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provide a more physically realistic analysis of the frequency-
dropping method in Sec. 3.2.

3.1 Analysis of Frequency Impact
For our study, we select CARN [29], IMDN [30], and
EDSR [20] as representative examples of CNN struc-
tures. For transformer structures, we examine SwinIR [3],
CAT [15], and HAT [35]. The process of dropping frequency
components is depicted in Fig. 1c. Given a high-resolution
(HR) image XHR, we apply a Fast Fourier Transform (FFT)
to obtain its frequency spectrum. In the frequency domain,
the components are shifted such that the low frequencies
are centered. We then calculate the Euclidean distance of
each frequency component from the center of the spectrum.
These distances are sorted, and based on the frequency
discard ratio γ, where 0 ≤ γ ≤ 1, we determine the number
of frequencies to discard. Specifically, the most distant γ · L
components (where L is the total number of frequency
components) are set to zero. Finally, we apply an Inverse
Fast Fourier Transform (IFFT) to reconstruct the image with
the high-frequency components dropped, referred to as
XHR

drop(γ). The formulation for this process is as follows

XHR
drop(γ) = IFFT(Drop(D(FFT(XHR)), γ)), (1)

where D(·) represents the Euclidean distance calculation.
Afterward, we downsample XHR

drop(γ) using bicubic inter-
polation to obtain the LR version XLR

drop(γ) (e.g. ×4 down-
sampling). Finally, we employ CNN-based and transformer-
based SR models to generate the super-resolved counterpart
XSR

drop(γ).
To analyze the attention bias of different structures to-

wards frequency components, we compute the peak signal-
to-noise ratio (PSNR) PD(γ) between XSR

drop(γ) and XHR
drop.

We then plot the PSNR drop trend to visualize the difference
between the two structures. As shown in Fig. 1a, the PSNR
drop ratio for each drop ratio is defined as

RD
drop(γ) =

P(0)− PD(γ)

P(0)
, (2)

where P(0) represents the PSNR without dropping, cal-
culated between XSR and XHR. The figures illustrate
that the transformer model exhibits reduced sensitivity to
high-frequency information and excels in capturing low-
frequency information, as evidenced by the smaller PSNR
change compared to the CNN model as the proportion of
discarded high-frequency information increases.

Furthermore, we conduct another experiment to evalu-
ate the effectiveness of different structures in reconstruct-
ing high-frequency information. Specifically, we calculate
the PSNR PE(γ) between XSR

drop(γ) and XHR and plot the
performance drop trend as previously depicted. The PSNR
drop ratio for each drop ratio can be expressed as

RE
drop(γ) =

PE(γ)− P(0)
P(0)

. (3)

From Fig. 1b, we observe that as the proportion of dis-
carded high-frequency information increases, the trans-
former model experiences a larger PSNR change compared
to the CNN model, indicating its limited ability to recon-
struct high-frequency information from low-frequency.
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Fig. 2. Effect of frequency dropping in the image domain using a mean
filter.

Our empirical results reveal that, although transformers
demonstrate impressive performance in tasks like super-
resolution, they exhibit shortcomings in handling high-
frequency information—critical for capturing fine details
such as textures and edges. In contrast, CNNs, with their
localized convolution operations, excel in processing high-
frequency content more effectively. These findings suggest
that transformers could benefit from the complementary
strengths of CNNs to enhance their ability to recover in-
tricate details.

To address this limitation, we propose a method that syn-
ergizes the strengths of both architectures. Specifically, we
integrate CNN-generated information as a high-frequency
prior to guide the transformer in refining its global rep-
resentation. By capitalizing on the CNN’s proficiency in
capturing high-frequency details and the transformer’s abil-
ity to model long-range dependencies, our approach yield
improve results, as reported in Section 6.

3.2 Real-world Imaging System

In real-world imaging systems, linear shift-invariant mod-
els are commonly used. The Point Spread Function (PSF)
describes how the system responds to a point source of
light, which results in blurring of the image [39], [40]. After
this blurring occurs, the signal is sampled by the sensors.
This sampling process further influences the final captured
image.

To provide a more physically realistic exploration, we
conducted additional experiments using a mean filter, a
linear operator, to better simulate real-world conditions.
Specifically, we applied the mean filter to the input HR
image. The process involves three steps. Initially, for a given
HR image XHR, we selected various window sizes θ ∈
{3, 5, 7, 9, 11} to reduce different levels of high-frequency
components, leading to increased blurriness as the win-
dow size grows. The frequency dropping process can be
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Fig. 3. Framework of CRAFT. HFERB extracts the high-frequency information from the input features, SRWAB captures the long-range dependency
of input features, and HFB integrates the output of HFERB and SRWAB to cross refine the global features. The reconstruction module employs a
3× 3 convolutional layer to refine the features, and a shuffle layer [38] is used to obtain the final SR output. Best viewed in color.

expressed as:

XHR
drop(θ) = Filter(XHR, θ), (4)

where XHR
drop(θ) represents the filtered HR image. Subse-

quently, we downsampled XHR
drop(θ) using bicubic interpo-

lation to derive the LR counterpart XLR
drop(θ). Finally, we

employed CNN-based and transformer-based SR models
to generate the super-resolved counterpart XSR

drop(θ). The
experimental results are presented in Fig. 2. The top row
shows the original HR image along with its filtered versions
for window sizes 3, 5, and 7. The second row illustrates the
corresponding frequency domain representations. The bot-
tom row presents the PSNR drop rate for various models on
the Urban100 dataset. As demonstrated by this experiment,
we reached the same conclusion as in Sec. 3.1.

4 FREQUENCY-AWARE SR FRAMEWORK

The CRAFT network integrates three key modules: shallow
feature extraction, residual cross-refinement fusion groups
(RCRFGs), and a reconstruction module as shown in Fig. 3.
The shallow feature extraction module consists of a sin-
gle convolutional layer, while the reconstruction module
is followed by SwinIR [3]. The RCRFG consists of several
cross-refinement fusion blocks (CRFBs). Each CRFB includes
three types of blocks: high-frequency enhancement residual

blocks (HFERBs), shift rectangle window attention blocks
(SRWABs), and hybrid fusion blocks (HFBs). We first de-
scribe the overall structures of CRAFT and then elaborate
on the three key designs, including HFERB, SRWAB, and
HFB.

4.1 Model Overview
The input LR image is processed by a 3× 3 convolutional
layer to obtain shallow features. These features are then
fed into a serial of RCRFGs to learn deep features. After
the last RCRFG, a 3× 3 convolutional layer aggregates the
features, and a residual connection is established between
its output and the shallow features for facilitating training.
The reconstruction module employs a 3× 3 convolutional
layer to refine the features, and a shuffle layer [38] is used
to obtain the final SR output.

4.2 High-Frequency Enhancement Residual Block
The HFERB aims to enhance the high-frequency informa-
tion, as shown in Fig. 3. It comprises the local feature
extraction (LFE) branch and the high-frequency enhance-
ment (HFE) branch. Specifically, we split the input features
Fin∈RH×W×C into two parts, and then processed by the two
branches separately

FLFE
in , FHFE

in = Split(Fin), (5)
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where FLFE
in , FHFE

in ∈RH×W×C/2 represent the input of LFE
and HFE. For the LFE branch, we use a 3× 3 convolutional
layer followed by a GELU activation function to extract local
high-frequency features

F̂LFE
in = fa(Conv3×3(FLFE

in )), (6)

where the Conv3×3(·) refers to the convolutional layer and
the fa(·) represents the GELU activation layer. For the HFE
branch, we employ a max-pooling layer to extract high-
frequency information from the input features FHFE

in . Then,
we use a 1 × 1 convolutional layer followed by a GELU
activation function to enhance the high-frequency features,

F̂HFE
in = fa(Conv1×1(MaxPooling(FHFE

in ))), (7)

where the Conv1×1(·) indicates the convolutional layer, the
MaxPooling(·) means the max-pooling layer and the fa(·)
represents the GELU activation layer. The outputs of the
two branches are then concatenated and fed into a 1 × 1
convolutional layer to fuse the information thoroughly. To
make the network benefit from multi-scale information and
maintain training stability, a skip connection is introduced.
The whole process can be formulated as

XH = Conv1×1(Concat(F̂LFE
in , F̂HFE

in )) + Fin, (8)

where the Concat(·) refers to the concatenation operation
and the Conv1×1(·) represents the convolutional layer.

4.3 Shift Rectangle Window Attention Block
We use the shift rectangle window (SRWin) to expand the
receptive field, which can benefit SISR [15]. Unlike square
windows, the SRWin uses rectangle windows to capture
more relevant information along the longer axis. In detail,
given an input Xin ∈ RH×W×C, we divide it into H×W

rh×rw
rectangle windows, where rh and rw refer to the height
and width of the rectangle window. For the i-th rectangle
window feature Xi∈R(rh×rw)×C, we compute the query, key,
and value as follows

Qi = XiW
Q
i ,Ki = XiWK

i ,Vi = XiWV
i , (9)

where the WQ
i ∈RC×d, WK

i ∈RC×d and WV
i ∈RC×d represent

the projection matrices and d is projection dimension which
is commonly set to d = C

M where the M is the number of
heads. The self-attention can be formulated as

Attention(Qi,Ki,Vi)=So f tmax(
QiK

T
i√

d
+B)Vi, (10)

where B is the dynamic relative position encoding [41].
Moreover, a convolutional operation on the value is intro-
duced to enhance local extraction capability.

To capture information from different axes, we use two
types of rectangle windows: horizontal and vertical win-
dows. Specifically, we split the attention heads into two
equal groups and compute the self-attention within each
group separately. We then concatenate the outputs of the
two groups to obtain the final output. The procedure can be
expressed as

Rwin-SA(X) = Concat(V-Rwin, H-Rwin)Wp, (11)

where the Wp∈RC×C represents the linear projection to fuse
the features, V-Rwin and H-Rwin indicate the vertical and

horizontal rectangle window attention. Unlike traditional
methods that use attention masks to restrict computations
within the same window, we empirically found that re-
moving the mask significantly reduces computation time
without negatively impacting performance, as indicated in
Table 8. In addition, a multi-layer perceptron (MLP) is used
for further feature transformations. The whole process can
be formulated as

X = Rwin-SA(LN(Xin)) + Xin

XS = MLP(LN(X)) + X,
(12)

where the LN represents the LayerNorm layer.

4.4 Hybrid Fusion Block

To better integrate the merits of CNN and transformer
(HFERB and SRWAB), we have designed a hybrid fusion
block (HFB), which is illustrated in Fig. 3. We formulate
the output of HFERB as the high-frequency prior query and
the output of SRWAB as key, value and calculate the inter-
attention to refine the global features which are obtained
from SRWAB. Moreover, most existing methods focus on
spatial relations and overlook channel information. To over-
come this limitation, we perform inter-attention based on
the channel dimension to explore channel dependencies. In
addition, this design will significantly reduce complexity.
Traditional methods that use spatial attention tend to result
in significant computational complexity (e.g., O(N2C), N ≫
C), where N represents the length of the sequence and C
represents the channel dimension. In contrast, our channel
attention design can transfer the quadratic component to
the channel dimension (e.g., O(NC2)), effectively reducing
complexity.

Specifically, as shown in Fig. 3, we use a 1 × 1 convo-
lutional layer followed by a 3× 3 depth-wise convolutional
layer to generate the high-frequency query Q ∈RH×W×C

based on the output of HFERB, XH . As to the output of
SRWAB, XS, we first normalize the features by LayerNorm
layer and then use the same operation as the query Q to get
the key K∈RH×W×C and the value V∈RH×W×C. Following
the [42], we perform the reshape operation on Q, K and V
to get the Q̂∈RC×(HW), K̂ ∈RC×(HW) and V̂ ∈RC×(HW).
After that, we compute the inter-attention as

Attention(Q̂, K̂, V̂ ) = So f tmax(
Q̂K̂T

α
)V̂ , (13)

where the α represents the learnable parameter. Meanwhile,
we add the refinement features to the XS to get the fusion
output X f use. In addition, we feed X f use to an improved
feed-forward network [42] to aggregate the features further.
The details of this structure are shown in Fig. 3. It introduced
a gate mechanism to fully extract the spatial and channel
information and gain better performance. The whole process
can be formulated as

X f use=Inter-Atten(LN(XS), XH)+XS

XHFB=IMLP(LN(X))+X f use,
(14)

where the LN means LayerNorm operation, IMLP repre-
sents the improved MLP, and Inter-Atten indicates the pro-
posed inter-attention mechanism, which introduces high-
frequency prior to refining the global representations.
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Fig. 4. Illustration of asymmetric and high-dynamic phenomenon.

TABLE 2
Effects of different post-training quantization settings.

Model FP32
Per-layer Per-channel

W8A8 W4A8 W8A4 W8A8 W4A8 W8A4

CRAFT 32.52 32.39 30.18 22.48 32.38 30.26 27.96

5 FREQUENCY-GUIDED PTQ STRATEGY

5.1 Preliminary
Quantizing a neural network means turning the float
weights and activations into integers to boost efficiency.
Suppose Xi is an input with full precision. We define its
quantized version as Xint

i and its approximate float form as
X̂i. When it comes to PTQ, the quantization process can be
formulated as:

Xint
i = clip

(⌊
Xi

scale

⌉
+ zero point; 0, 2b − 1

)
, (15)

where b is the number of bits used in quantization, ⌊·⌉
indicates the rounding operation, and clip is defined as:

clip(x; a, c) =


a, if x < a,
x, if a ≤ x ≤ c,
c, if x > c.

(16)

The scale and zero point parameters are essential for a precise
quantization. They are calculated as:

scale =
u− l

2b − 1
, zero point = clip

(⌊
− l

scale

⌉
; 0, 2b − 1

)
,

(17)
with l and u representing the minimal and maximal bounds
of the input data. The dequantization process is given by:

X̂i = scale · (Xint
i − zero point). (18)

Since the minimal and maximal bounds (l and u) determine
the quantization scale and range, the appropriate setting of
them is the key to preserving the integrity of the quantized
data and minimizing performance loss.

5.2 Effects of PTQ on CRAFT
In this section, we analyze the effects of PTQ on the CRAFT
through extensive experiments. By applying the MinMax
[43] method as our PTQ strategy, we assess the effects of
PTQ on CRAFT across various settings.

From the perspective of granularity, we distinguish be-
tween per-layer and per-channel quantization in Table 2.
Per-layer quantization applies a uniform scale across the
entire layer, enhancing computational efficiency but po-
tentially compromising precision. In contrast, per-channel
quantization assigns a unique scale to each channel within

(a) Full-precise

(b) Quantization

Fig. 5. Demonstrating the impact of quantization on frequency and
image representation. Here, we showcase the output of HFERB with
4-bit quantization to highlight the loss of high-frequency components.

a layer, offering higher granularity and accuracy at the
expense of greater computational complexity. Despite the
error-minimizing advantages of per-channel quantization,
its substantial computational requirements make it less
practical for deployment on source-constrained devices.
This drives our inclination towards per-layer quantization
in search of an optimal balance between computational
efficiency and model accuracy.

From the perspective of quantizing weights and acti-
vations, as depicted in Table 2, reducing the precision of
activation values to 4 bits leads to a notable decrease in the
quality of image reconstruction, showing an average drop of
10.04 dB with per-layer quantization and 4.56 dB with per-
channel quantization. This contrasts sharply with the lesser
impact observed when quantizing weights, which results in
a drop of 2.34 dB and 2.26 dB, respectively. A closer look
at the activation distributions within CRAFT, especially at
the output of the first RCRFG block (referred to as RCRFG
0) as illustrated in Fig. 4, reveals considerable asymmetry
and high dynamic. The activation histograms for RCRFG 0’s
output display pronounced skewness, indicating variable
asymmetry across different input samples within the same
layer.

From the frequency perspective, we exhibit the outputs
of HFERB in both the frequency domain and feature space,
as well as the original image, under 4-bit quantization, as
shown in Fig. 5. The first row displays the results with full
precision, while the second row presents the outcomes af-
ter quantization. The figure demonstrates that quantization
leads to a significant loss of high-frequency components
(illustrated in the third column) and fails to generate mean-
ingful features (shown in the second column), compared
to the original image (first column). Considering HFERB
is tailored to introduce high-frequency priors into CRAFT,
the reduction of high-frequency content crucially affects this
block’s function, resulting in compromised quality of the
super-resolved output.

5.3 Adaptive Dual Clipping with Frequency-guided Op-
timization
To address the asymmetry in feature distributions, we pro-
pose a quantization method that combines an adaptive dual
clipping (ADC) strategy with frequency-guided optimiza-
tion (FGO). For each layer requiring quantization, we begin
by plotting its histogram and then gradually adjust the
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Algorithm 1: Frequency-guided Criteria Measuring
Processing (FCMP)

Input: Quantization bit b, minimal boundary l,
maximal boundary u, measuring type t, FFT
operation F (·), and feature maps X with C
channels.

Output: Criteria score γ.

1 scale← u−l
2b−1

;

2 zero point← clip(
⌊
− l

scale

⌉
; 0, 2b − 1);

3 Xint ← clip(
⌊

X
scale

⌉
+ zero point; 0, 2b − 1);

4 X̂ ← (Xint − zero point) · scale;
5 if t = FGO then

6 γ← 1
C

C
∑

i=1

∣∣(|F (Xi)| −
∣∣F (X̂i)

∣∣)∣∣;
7 else

8 γ← 1
C

C
∑

i=1

∣∣Xi − X̂i
∣∣;

9 end
10 return γ

range to determine a more accurate quantization range. This
method differs from previous approaches that adjust both
the lower and upper boundaries simultaneously or based
on statistical calculations. Our strategy relies on comparing
the features before and after quantization to refine the
quantization range.

Our strategy is based on the frequency-guided criteria
measuring process (FCMP), as described in Algorithm 1.
It plays a crucial role in assessing the fidelity loss caused
by quantization, mainly by calculating the mean absolute
error (MAE) between the pre-quantized and post-quantized
features. Importantly, our strategy stops adjusting when
an increase in MAE indicates a possible deterioration in
the quality of image reconstruction. Furthermore, given
the noticeable reduction in high-frequency components at-
tributable to quantization, as shown in Fig. 5, which impairs
HFERB, we have implemented a frequency domain MAE
constraint not only on HFERB but also on the model’s
input and output layers. This strategy is designed to more
effectively regulate the quantization process, preventing
excessively narrow quantization ranges.

Expanding on this concept, Algorithm 2 details our ADC
process, wherein the values from FCMP play a pivotal
role in incrementally adjusting the clipping boundaries.
Beginning with the initial clipping boundaries at the feature
extremes for each layer of the full-precision CRAFT, we use
the calibration dataset to iteratively refine these boundaries.

5.4 Boundary Refinement Process
Addressing the high dynamic range of features presents a
significant challenge, particularly under conditions of ex-
tremely low-bit (4-bit) quantization. We further introduce
a boundary refinement (BR) strategy that enhances the
preliminary boundaries set by the ADC process.

The BR strategy is detailed in Algorithm 3. We start
with the coarse boundary values obtained from the ADC
stage as our initial inputs. These initial boundaries are

Algorithm 2: Adaptive Dual Clipping Processing
Input: Quantization layer F, calibration data d,

Quantization bit b, measuring type t and the
number of bins 2b.

Output: {l, u}.
1 Initialize {l, u} with the minimum and maximum

values of F;
2 H(x1), . . . , H(x2b )← Histogram(F(d));
3 lbest ← min(F(d)), ubest ← max(F(d));
4 ∆← (ubest − lbest)/2b;
5 γbest ← ∞;
6 repeat
7 γl

new = FCMP(b, lbest + ∆, ubest , t, F(d));
8 γr

new = FCMP(b, lbest , ubest − ∆, t, F(d));
9 if γl

new < γr
new then

10 γnew = γl
new ;

11 lnew = lbest + ∆;
12 else
13 γnew = γr

new ;
14 unew = ubest − ∆;
15 end
16 γbest ← γnew ;
17 lbest ← lnew , ubest ← unew ;
18 until increasing γbest detected;
19 l = lbest ;
20 u = ubest ;
21 return {l, u}

Algorithm 3: Boundary Refinement Process

Input: Coarse boundary values {lcoarse, ucoarse}K of K
layers, calibration data d, learning rate η,
full-precision model F.

Output: Refined boundary values {lre f ined, ure f ined}K.

1 Initialize {lre f ined, ure f ined}K with {lcoarse, ucoarse}K;
2 According to the input data d, perform a

full-precision and quantized model forward pass to
obtain X̂ and X;

3 Calculate reconstruction loss Lrec. using Eq. (19);
4 Perform backpropagation and update
{lre f ined, ure f ined}K with learning rate η;

5 return {lre f ined, ure f ined}K

then transformed into learnable parameters, allowing the
model to fine-tune them through training. The quantizer’s
discrete nature results in direct differentiation leading to
zero gradients, which hinders backpropagation. To address
this issue, we employ straight-through estimation (STE) [44],
which enables us to approximate gradient calculation for
these parameters.

Our strategy diverges from the method outlined by [26],
which applies intermediate feature regularization and iter-
ative updates the boundaries of weights and activations.
Instead, we focus our regularization efforts solely on the
output, synchronizing the updates to the boundaries of
weights and activations. This difference is critically impor-
tant as it removes the necessity to store intermediate feature
representations, greatly reducing the memory usage during
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Algorithm 4: Frequency-guided PTQ Process
Input: Full-precision SR model F of K layers,

calibration dataset Dcal , quantization bit b,
measuring type {t}K of K layers, number of
bins 2b, total epochs E, learning rate η.

Output: Refined boundary values {lre f ined, ure f ined}K.

/* Use the ADC (Algorithm 2) with the
FCMP (Algorithm 1)) */

1 Initialize {lcoarse, ucoarse}K with the minimum and
maximum values of K layers;

2 for d ∈ Dcal do
3 for k = 1 to K do
4 lbest , ubest = ADC(Fk, d, b, tk, 2b);
5 lk

coarse = β · lk
coarse + (1− β) · lbest ;

6 uk
coarse = β · uk

coarse + (1− β) · ubest ;
7 end
8 end

/* BR Process (Algorithm 3) */
9 for i = 1 to E do

10 for d ∈ Dcal do
11 {lcoarse, ucoarse}K =

BR({lcoarse, ucoarse}K, d, η, F);
12 end
13 end
14 {lre f ined, ure f ined}K = {lcoarse, ucoarse}K;
15 return {lre f ined, ure f ined}K

training and contributing to more stable training.
During the boundary refinement process, we use the

MSE as the reconstruction loss for optimization, which is
defined as:

Lrec. =
1
B

B

∑
i=1

∥∥Xi − X̂i
∥∥

2 , (19)

where B denotes the batch size, Xi represents the output
from the full-precision model, and X̂i indicate the output
from the quantization model.

5.5 Overview of Frequency-guided PTQ Strategy
Based on the two strategies described above, we conduct
the overall process of our frequency-guided PTQ process, as
illustrated in Algorithm 4. First, we set the layers of HFERB
and the input and output layers to t = FGO, and then initial-
ize l and u for each layer with their corresponding minimal
and maximal values. After that, we perform ADC with the
calibration set Dcal to refine the boundaries. This refinement
process involves assessing two potential new boundaries at
each iteration, utilizing a moving average method to estab-
lish more stable boundary values. Specifically, for those lay-
ers where t is equal to FGO, we apply frequency constraints
instead of feature domain constraints. We then obtain the
coarse boundaries for each layer, {lcoarse, ucoarse}. Following
this, we perform BR to further refine the coarse boundaries
using the same calibration set Dcal over E epochs. Notably,
with improved initial boundaries, a limited number of
epochs (e.g., 10 epochs) is sufficient for fine-tuning these
boundaries to achieve desired outcomes. Finally, we obtain
the refined boundaries for each layer, {lre f ined, ure f ined}.

6 EXPERIMENTAL RESULTS

6.1 Data and Metrics
Our CRAFT model is trained on the DIV2K dataset [47],
which is composed of 800 high-resolution images. Mean-
while, five benchmarks are used for evaluation, includ-
ing Set5 [48], Set14 [49], BSD100 [50], Urban100 [51], and
Manga109 [52] with three magnification factors:×2,×3, and
×4. The quality of the reconstructed images is evaluated
using PSNR, and SSIM [53]. The complexity of the model is
indicated by its parameters.

For quantization, 100 low-resolution patches of 120× 120
pixels are randomly selected from the DIV2K dataset to
form a calibration dataset. This calibration dataset is con-
sistently used across both stages of quantization. Further-
more, the high-resolution counterparts are not included
to simulate scenarios often encountered in practice, where
ground truths may not be available. The effectiveness of the
proposed quantization strategies is further validated across
seven benchmark datasets: Set5 [48], Set14 [49], BSD100 [50],
Urban100 [51], Manga109 [52], DIV2K [47], and LSDIR [54],
at a ×4 magnification factor, using the PSNR and SSIM
metrics for a comprehensive assessment.

6.2 Implementation Details
Following the general setting, we use bicubic to obtain the
corresponding LR images from the original HR images.
During training, we randomly crop the images into 64× 64
patches, and the total training iterations are 500K. Mean-
while, data augmentation is performed, such as random
horizontal flipping and 90◦ rotation. The Adam optimizer
with β1 = 0.9 and β2 = 0.999 is adopted to minimize the L1
Loss. The batch size is set to 64, the initial learning rate is
set to 2× 10−4 and reduced by half at the milestone [250K,
400K, 450K, 475K]. In addition, the model is trained on 4
NVIDIA 3090 GPUs using the PyTorch toolbox.

During the quantization, we adjusted the batch size to
2 and proceeded with training for 10 epochs. The learning
rate for 8-bit quantization was set at 2× 10−4 and increased
to 2× 10−3 for 6-bit and 4-bit quantizations to boost their
performance. The smoothing parameter β was set to 0.9.
Throughout this phase, simulated quantization was applied
to all convolutional and linear layers, as well as matrix
multiplication operations. Additionally, we ensured that
the input and output precision remained at 8 bits. This
quantization stage was performed on a single NVIDIA 3090
GPU, utilizing the PyTorch framework.

Within the CRAFT architecture, we integrate 4 RCRFGs
and include 2 CRFBs in each RCRFG, with each CRFB com-
prising 1 HFERB and 2 SRWABs to balance efficiency and
performance. We set the feature channels and the attention
head to 48 and 6, and set the MLP expansion ratio to 2.
Based on the work by Zamir et al. [42], we select an IMLP
expansion ratio of 2.66. To accommodate diverse receptive
fields, two distinct rectangle window sizes are used in our
model, specifically [sh, sw] = [4, 16] and [16, 4].

6.3 Comparison with State-of-the-Art Methods
We benchmark our proposed CRAFT model against various
leading SISR methods, including EDSR [20], CARN [29],
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TABLE 3
Performance comparison of different SISR models on five benchmarks. “#Params” represents the total number of network parameters. The best

and second best results for each setting are highlighted and underlined, respectively.

Scale Model #Params Set5
(PSNR/SSIM)

Set14
(PSNR/SSIM)

BSD100
(PSNR/SSIM)

Urban100
(PSNR/SSIM)

Manga109
(PSNR/SSIM)

×2

EDSR-baseline [20] 1370K 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
CARN [29] 1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [30] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

LatticeNet [45] 756K 38.06/0.9607 33.70/0.9187 32.20/0.8999 32.25/0.9288 -/-
LAPAR-A [31] 548k 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
HPUN-L [32] 714K 38.09/0.9608 33.79/0.9198 32.25/0.9006 32.37/0.9307 39.07/0.9779

SwinIR-light [3] 878K 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783
ESRT [18] 777K 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774

ELAN-light [34] 582K 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782
CRAFT (Ours) 737K 38.23/0.9615 33.92/0.9211 32.33/0.9016 32.86/0.9343 39.39/0.9786

×3

EDSR-baseline [20] 1555K 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
CARN [29] 1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN [30] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

LatticeNet [45] 765K 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -/-
LAPAR-A [31] 544k 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
HPUN-L [32] 723K 34.56/0.9281 30.45/0.8445 29.18/0.8072 28.37/0.8572 33.90/0.9463

SwinIR-light [3] 886K 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478
LBNet [46] 736K 34.47/0.277 30.38/0.8417 29.13/0.8061 28.42/0.8559 33.82/0.9406
ESRT [18] 770K 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455

ELAN-light [34] 590K 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478
CRAFT (Ours) 744K 34.71/0.9295 30.61/0.8469 29.24/0.8093 28.77/0.8635 34.29/0.9491

×4

EDSR-baseline [20] 1518K 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
CARN [29] 1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN [30] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

LatticeNet [45] 777K 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 -/-
LAPAR-A [31] 659k 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
HPUN-L [32] 734K 32.31/0.8962 28.73/0.7842 27.66/0.7386 26.27/0.7918 30.77/0.9109

SwinIR-light [3] 897K 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
LBNet [46] 742K 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906 30.76/0.9111
ESRT [18] 751K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100

ELAN-light [34] 601K 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150
CRAFT (Ours) 753K 32.52/0.8989 28.85/0.7872 27.72/0.7418 26.56/0.7995 31.18/0.9168

TABLE 4
Effect of HFERB, SRWAB, and HFB on SISR. The results (×4) are

obtained from the Manga109 dataset.

Model HFERB SRWAB HFB Concat PSNR

CRAFTconv ✓ ✓ 30.79
CRAFTtran f ormer ✓ ✓ 31.12

CRAFTconcat ✓ ✓ ✓ 30.92
CRAFT ✓ ✓ ✓ 31.18

IMDN [30], LatticeNet [45], LAPAR [31], SwinIR [3],
HPUN [32], ESRT [18], LBNet [46], and ELAN [34].

Quantitative Results. As shown in Table 3, CRAFT
outperforms conventional CNN-based methods such as
EDSR, achieving gains of 0.85dB, 0.84dB, and 0.83dB at
×2, ×3, and ×4 magnification factors, respectively, on the
Manga109 dataset, while requiring 46%, 52%, and 50% fewer
parameters. Against channel attention methods like CARN,
CRAFT demonstrates improvements of 1.03dB, 0.79dB, and
0.71dB for the same magnification factors, accompanied
by a 54%, 53%, and 52% parameter reduction. Compared
to transformer-based models [3], [18], [34], CRAFT offers
enhancements of 0.34dB, 0.31dB, and 0.29dB at the×3 factor,
with a similar parameter count.

Qualitative Results. We present a visual comparison
(×4) in Fig. 6 and analyze the results. Our proposed CRAFT
model integrates the strengths of both CNN and transformer
structures, leading to accurate line direction recovery while
preserving image details. To further investigate the perfor-

mance, we compare the local attribution map (LAM) [55]
between CRAFT and SwinIR, as shown in Fig. 7. LAM
indicates the correlation between the significance of each
pixel in LR and the SR of the patch that is outlined with the
red box. By leveraging a broader range of information, our
model achieves improved results. Furthermore, we examine
the diffusion index (DI), which signifies the range of pixels
involved. A larger DI indicates a wider scope of attention.
Compared to SwinIR, our model exhibits a higher DI,
implying that it can capture more contextual information.
These results demonstrate the effectiveness of the proposed
CRAFT method.

6.4 Effect of CRAFT Components
6.4.1 Effect of HFERB and SRWAB
We conducted several experiments to demonstrate the ef-
fectiveness of HFERB and SRWAB, as presented in Table 4.
Specifically, we removed SRWAB and HFERB separately to
assess their contributions. We observed that relying solely
on local or global information, as denoted by CRAFTconv
and CRAFTtrans f ormer, respectively, resulted in inadequate
representation learning, leading to lower performance. Fur-
thermore, we found that SRWAB provides the most signif-
icant performance improvement, demonstrating the bene-
fits of the long-range dependencies learned by the trans-
former. In addition, high-frequency priors from the CNN
are also helpful in improving performance, cross-refining
the learned features and further improving performance.
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Img012 (×4)

YumeiroCook (×4)

UchuKigekiM774 (×4)

Bicubic EDSR [20] CARN [29] LBNet [46]

SwinIR [3] ESRT [18] CRAFT (Ours) HR

Bicubic EDSR [20] CARN [29] LBNet [46]

SwinIR [3] ESRT [18] CRAFT (Ours) HR

Bicubic EDSR [20] CARN [29] LBNet [46]

SwinIR [3] ESRT [18] CRAFT (Ours) HR

Fig. 6. Qualitative comparison with SOTA methods. CRAFT achieves better restoration quality in both line directions and details.
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Fig. 7. Comparison of the LAM results of SwinIR [3] and CRAFT. LAM indicates the correlation between the significance of each pixel in LR and the
SR of the patch that is outlined with the red box. CRAFT uses a broader range of information to obtain better performance. DI quantifies the LAM
results, CRAFT has a higher DI score, indicating its ability to capture more contextual information.

6.4.2 Frequency Analysis of HFERB and SRWAB

We visualized the features extracted from two blocks in dif-
ferent RCRFGs and plotted the Fourier spectrum to observe
what each block learns. The results, shown in Fig. 8, indicate
that HFERB focuses more on high-frequency information,
while SRWAB extracts more global information. Specifically,
the top row of each image indicates the Fourier spectrum
of each block, and the bottom row indicates the feature

maps of each block. The figure shows that SRWAB has a
weaker response and focuses more on the low-frequency
parts, which correspond to flat regions, while HFERB shows
a stronger response and focuses more on intricate parts of
features, such as edges and corners. The feature maps on the
bottom row also support this conclusion. HFERB captures
more details such as window edges and cornices, while
SRWAB pays more attention to flat areas such as windows
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(a) Visualization of the spectrum of the 2nd RCRFG

HFE LFE SRWin-Attention

(b) Visualization of the feature of the 2nd RCRFG

HFE LFE SRWin-Attention

LR Image

(c) Visualization of the spectrum of the 4th RCRFG

HFE LFE SRWin-Attention

(d) Visualization of the feature of the 4th RCRFG

HFE LFE SRWin-Attention

(e) Visualization of the spectrum of the 2nd RCRFG

HFE LFE SRWin-Attention

(f) Visualization of the feature of the 2nd RCRFG

HFE LFE SRWin-Attention

LR Image

(g) Visualization of the spectrum of the 4th RCRFG

HFE LFE SRWin-Attention

(h) Visualization of the feature of the 4th RCRFG

HFE LFE SRWin-Attention

Fig. 8. Visualization of HFERB and SRWAB. The LFE indicates the local feature extraction branch in HFERB, the HFE means the high-frequency
enhancement branch in HFERB, and the SRWin-Attention represents the self-attention part in SRWAB.

TABLE 5
Effect of high-frequency prior. The results (×4) are obtained from the

Manga109 dataset.

Model Regular Swap Cascade PSNR SSIM

CRAFTswap ✓ 30.67 0.9113
CRAFTcascade ✓ 30.88 0.9141

CRAFT ✓ 31.18 0.9168

and walls.

6.4.3 Effect of HFB
To evaluate the effectiveness of HFB, we conducted an
experiment where we modified the fusion method to a
concatenation formulation. This involved concatenating the
outputs of HFERB and SRWAB and replacing the HFB with
a 3× 3 convolutional layer to obtain the final output. The
results are presented in Table 4, where CRAFTconcat denotes
the modified version. The result shows that our proposed
method outperforms the concatenation structure by 0.26dB,
demonstrating the effectiveness of our HFB. This improve-
ment can be attributed to SRWAB and HFERB focusing on
disparate frequency information. Stacking features directly
impedes the ability of the network to learn the relationship
between high-frequency and low-frequency components.
Conversely, the inter-attention mechanism presents a viable
solution for integrating features with different distributions.

6.4.4 Effect of the High-Frequency Prior
We conducted several experiments to investigate the effec-
tiveness of high-frequency prior. Firstly, we swapped the
input of Q and K, V in HFB and treated the output of
SRWAB as Q and the output of HFERB as K, V to verify
whether global features are dominant in restoration and
high-frequency features only serve as a prior for refining the
global representation. As shown in Table 5, compared to the
original design, swapping the input leads to a significant
drop in performance, with a 0.51dB decrease in PSNR.
Furthermore, we also performed an experiment to formulate
the model as a cascade structure to verify the effectiveness
of the design introducing high-frequency priors. As shown
in Table 5, the CRAFTcascade structure resulted in a perfor-
mance drop, with a 0.3dB decrease in PSNR compared to

Img062 (×4)

Bicubic w/o H w/ H HR

Bicubic w/o H w/ H HR

Φ(w/ H) Φ(w/o H) |Φ(w/ H)−Φ(w/o H)|

Fig. 9. Qualitative comparison of the model with and without HFERB.
Models with and without HFERB are denoted as w/ H and w/o H,
respectively. The symbols Φ(w/o H) and Φ(w/ H) represent the spectra
of the models without and with HFERB, respectively. The evaluation is
conducted using a magnification factor of ×4.

CRAFT. These results demonstrate the effectiveness of high-
frequency priors in the CRAFT model. Additionally, we
visualized the frequency domain representations in Fig. 9
to demonstrate that integrating a high-frequency prior en-
hances detail sharpness. The high-frequency improvements
were quantified using Fourier transforms, where Φ(w/ H)
and Φ(w/o H) denote the spectra of models with and with-
out the high-frequency prior, respectively. Specifically, the
spectrum of both models was defined as:

Φ(w/ H) = FFT(w/ H),
Φ(w/o H) = FFT(w/o H).

(20)

From there, we derived the residual spectrum map between
Φ(w/ H) and Φ(w/o H), formulated as:

R(w/ H, w/o H) = |Φ(w/ H)−Φ(w/o H)|, (21)

where R(·) represents the residual spectrum map. This map
shows a stronger high-frequency response when a high-
frequency prior is included, indicating improved restora-
tion of high-frequency components. Concurrently, visual
assessment reveals that the introduction of high-frequency
priors leads to the restoration of more accurate details,
underscoring the significance of HFERB.
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TABLE 6
Complexity analysis compared to SwinIR with an magnification factor of
×4. The FLOPs and inference time are measured under the setting of

generating 512× 512 image.

Model #Params.
(K)

#FLOPs
(G)

#GPU Mem.
(M)

Ave. Time
(ms)

SwinIR 897 32.2 141.2 79.11
CRAFT 753 26.0 79.5 56.40

TABLE 7
Complexity analysis of each block with an magnification factor of ×4.

The FLOPs is measured under the setting of generating 512× 512
image.

Model CRAFT
w/o HFERB

CRAFT
w/o SRWAB

CRAFT
w/o HFB CRAFT

#Params. (K) 688 441 503 753
#FLOPs (G) 23.8 14.2 20.0 26.0

Fig. 10. Comparison of average log-amplitude spectra with different
methods. The results clearly demonstrate that our CRAFT method ef-
fectively restores high-frequency components.

6.4.5 Exploring CRAFT‘s Capability in Restoring High-
Frequency Components
Given our findings regarding the limited ability of trans-
formers to reconstruct high-frequency information, as dis-
cussed in Sec. 3, we conducted an experiment using log-
amplitude spectral analysis to assess CRAFT’s capabilities.
Specifically, we performed this experiment on the image
img092 from the Urban100 dataset, applying a magnification
factor of 4. Bicubic interpolation and SwinIR [3] were set
as baselines to evaluate CRAFT’s performance. The experi-
mental results are depicted in Fig. 10. The x-axis represents
increasing frequency values, with higher values indicating
higher frequencies. For clearer comparison, we have mag-
nified a localized region of the curves, shown in the top-
right inset of the figure. As observed in the figure, the HR
image retains the entire range of high-frequency compo-
nents, while the bicubic interpolation loses nearly all high-
frequency details. SwinIR [3] is able to restore some high-
frequency information, but CRAFT demonstrates superior
performance, recovering a greater extent of high-frequency
components.

6.4.6 Analysis of CRAFT’s Complexity
We compared CRAFT with SwinIR in terms of complexity
using an input size of 128 × 128, as shown in Table 6.

TABLE 8
Runtime tested on an NVIDIA GeForce RTX 3090 GPU with a

128× 128 input image. The PSNR results are obtained from the
Manga109 dataset.

Scale Model Mask w/o Mask PSNR Time (ms)

×2 CRAFTmask ✓ 31.18 87.44
CRAFT ✓ 31.18 55.36

×3 CRAFTmask ✓ 31.18 86.67
CRAFT ✓ 31.18 51.50

×4 CRAFTmask ✓ 31.18 93.08
CRAFT ✓ 31.18 56.40

The analysis considered parameters, FLOPs, GPU memory
consumption, and average inference time. Compared to
SwinIR, CRAFT has fewer parameters and FLOPs, and
requires less memory consumption and inference time.
Furthermore, we analyzed the complexity of our CRAFT
framework and summarized the findings in Table 7. We
observed that SRWAB contributes approximately 46% of
the total complexity, while HFERB involves fewer convo-
lution operations, resulting in reduced FLOPs. Moreover,
the HFB module’s channel-wise attention effectively reduces
the computational burden. In addition, we investigated the
impact of employing a mask mechanism in rectangle atten-
tion on the model’s efficiency, as illustrated in Table 8. Our
findings suggest that omitting the mask does not compro-
mise performance but significantly boosts model inference
speed. The results indicate that removing the mask leads
to a reduction in inference time by approximately 37%, 41%,
and 39% for magnification factors of 2, 3, and 4, respectively.

6.5 Comparison with quantization strategies

This section presents a comparative analysis of our quanti-
zation strategies against other PTQ methods, including Min-
Max [43], Percentile [56], and PTQ4SR [26]. The evaluations
are performed across various quantization bit widths, with
magnification factor of ×4.

Quantitative Results. We compare the performance of
our CRAFT after applying various PTQ strategies, show-
cased in Table 9. Our evaluation spans across different
quantization bit-widths (8-bit, 6-bit, and 4-bit) for both
model weights and activations. Generally, the results show a
significant drop in performance as the quantization bit level
decreases, particularly at 4-bit quantization. Significantly,
methods like MinMax [43] and Percentile [56], which lack
boundary refinement, show considerable degradation in
performance compared to the full-precision model. Despite
this challenge, our PTQ strategies exhibit superior per-
formance across all quantization levels. Specifically, when
compared to MinMax [43] and Percentile [56], our approach
results in significant PSNR improvements of up to 8.32dB
and 8.70dB at 4-bit quantization. Even against method that
use a boundary refinement strategy like PTQ4SR [26], our
approach achieves performance gains of up to 2.22dB at 4-
bit quantization.

Qualitative Results. We present the visual results
obtained by applying different quantization methods to
CRAFT in Fig. 11. We selected two samples from the Ur-
ban100 and Set14 datasets and applied 4-bit quantization
with a×4 magnification factor. From the images, it’s evident
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TABLE 9
PSNR/SSIM comparison between existing PTQ methods and ours by applying them to CRAFT for ×4 SISR. “W/A” represents weight and

activation bit-width, respectively. The symbol † indicates our reproduced results.

Scale Model W/A Set5 Set14 BSD100 Urban100 Manga109 DIV2K LSDIR

×4

Full-Precision 32/32 32.52/.8989 28.85/.7872 27.72/.7418 26.56/.7995 31.18/.9168 30.67/.8428 26.43/.7685
MinMax [43] 8/8 32.39/.8950 28.77/.7837 27.65/.7384 26.49/.7957 30.95/.9119 30.54/.8388 26.37/.7650

Percentile [56] 8/8 32.42/.8957 28.75/.7843 27.66/.7392 26.42/.7960 30.72/.9111 30.54/.8394 26.35/.7655
PTQ4SR† [26] 8/8 32.33/.8954 28.69/.7834 27.62/.7380 26.34/.7927 30.81/.9119 30.50/.8386 26.31/.7633

Ours 8/8 32.45/.8965 28.80/.7850 27.68/.7397 26.49/.7967 31.06/.9141 30.59/.8401 26.39/.7660
MinMax [43] 6/6 31.19/.8556 27.98/.7502 27.13/.7085 25.81/.7622 29.62/.8713 29.56/.8025 25.85/.7319

Percentile [56] 6/6 31.29/.8597 28.08/.7536 27.19/.7112 25.80/.7605 29.52/.8640 25.90/.7316 25.90/.7316
PTQ4SR† [26] 6/6 31.53/.8749 28.15/.7653 27.23/.7213 25.60/.7654 28.93/.8791 29.68/.8157 25.90/.7422

Ours 6/6 32.01/.8820 28.51/.7717 27.49/.7272 26.16/.7808 30.11/.8922 30.18/.8246 26.17/.7508
MinMax [43] 4/4 21.14/.3715 19.84/.2979 20.07/.2771 18.58/.3041 21.06/.4174 20.37/.2862 19.36/.2979

Percentile [56] 4/4 20.76/.3407 20.44/.3007 20.45/.2784 19.32/.3046 20.51/.3529 20.33/.2622 19.64/.2806
PTQ4SR† [26] 4/4 28.15/.7555 26.08/.6591 25.82/.6280 23.77/.6405 24.81/.7149 27.47/.6961 24.47/.6257

Ours 4/4 29.46/.7854 26.92/.6891 26.32/.6492 24.50/.6787 27.03/.7653 28.10/.7214 24.97/.6593

Img061 (×4)

Comic (×4)

Bicubic MinMax [43] Percentile [56] PTQ4SR [26] Ours Full-Precision

Bicubic MinMax [43] Percentile [56] PTQ4SR [26] Ours Full-Precision

Fig. 11. Visual results of different quantization methods on 4-bit CRAFT model with a magnification factor of 4.

that both MinMax [43] and Percentile [56] fail to accurately
recreate edges and context, introducing more noise during
quantization. While PTQ4SR [26] improves SR quality to
some extent through further refinement of boundaries, it
still exhibits a slightly distorted appearance with less de-
tailed clarity compared to full-precision results. In contrast,
our proposed PTQ strategies yield clearer and more accu-
rate results. Notably, even when compared to full-precision
models, the outputs from our quantized model are not only
acceptable but also convey meaningful visual information.
This highlights the practical utility of our approach.

6.6 Analysis of PTQ Strategies

6.6.1 Effect of Frequency-guided Optimization
We conducted a detailed comparison with PTQ4SR [26], as
shown in Table 10, to highlight the benefits of our frequency-
guided optimization (FGO). We used PTQ4SR [26] as a
baseline for comparing our method’s effectiveness in dual
clipping and boundary refinement. The strategies of DBDC

and PaC, as described in PTQ4SR [26], were evaluated
against our ADC and BR strategies. Initially, we compared
our ADC strategy without FGO to PTQ4SR [26]’s DBDC
and found that our ADC achieved better starting values,
outperforming DBDC by up to 3.54dB. Following this, we
assessed the performance of DBDC against our ADC with
the FGO strategy included, clearly demonstrating that in-
corporating FGO into our strategy further improved perfor-
mance, exceeding DBDC by up to 3.70dB. Furthermore, we
visualize the boundary values of the two different clipping
strategies across 4-bit, 6-bit, and 8-bit quantizations with
magnification factor of 4 in Fig. 12. We choose the output
of CRFB, HFERB, SRWAB, and HFB as the probe. From
the visual results, it’s evident that our ADC demonstrates a
more constrained clipping range, providing a more precise
initial value for subsequent training stages. This narrower
range implies that a more accurate representation of the
small range of values is sufficient to represent the full-
precision counterparts.
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TABLE 10
Efficacy of quantization methods across two stages, using DBDC and PaC from PTQ4SR [26] as baselines for comparison with our ADC and BR

strategies. The symbol ∆ represents the PSNR improvement over the baseline methods at each stage. FGO denotes the proposed
frequency-guided optimization. The dashed line separates the two stages for clarity.

Scale Model FGO Set5 (∆) Set14 (∆) B100 (∆) Urban100 (∆) Manga109 (∆) DIV2K (∆) LSDIR (∆)

×4

DBDC [26] ✗ 23.69 22.18 21.90 20.24 22.49 21.36 20.77
ADC (Ours) ✗ 26.21 (+2.52) 24.43 (+2.25) 24.05 (+2.15) 22.65 (+2.41) 23.23 (+0.74) 24.90 (+3.54) 23.21 (+2.44)
ADC (Ours) ✓ 26.51 (+2.82) 24.61 (+2.43) 24.11 (+2.21) 22.77 (+2.53) 24.94 (+2.45) 25.06 (+3.70) 23.30 (+2.53)

PaC [26] ✗ 28.94 26.52 26.03 24.10 25.63 27.89 24.76
BR (Ours) ✗ 28.95 (+0.01) 26.79 (+0.27) 26.27 (+0.24) 24.42 (+0.32) 27.07 (+1.44) 27.96 (+0.07) 24.87 (+0.11)
BR (Ours) ✓ 29.46 (+0.52) 26.92 (+0.40) 26.32 (+0.29) 24.50 (+0.40) 27.03 (+1.40) 28.10 (+0.21) 24.97 (+0.21)

Fig. 12. Clipping strategies comparison between PTQ4SR [26] and our method applied to CRAFT with a magnification factor of 4. The layer index
represents progressively deeper layers in the model. From left to right, the results show quantization at 8 bits, 6 bits, and 4 bits, respectively.

(a) Full-precise (b) Ours w/o FGO (c) Ours
Fig. 13. Visualization of HFERB outputs under different quantization strategies. FGO refers to the proposed frequency-guided optimization. (a)
Feature distribution of the full-precision model in both spatial and frequency domains. (b) Output without FGO, showing significant frequency loss.
(c) Output after applying FGO, demonstrating notably improved frequency restoration.

TABLE 11
PSNR/SSIM comparison with transformer-based methods for the magnification factor of 4. All methods are quantized by the proposed general

PTQ strategy. “W/A” represents weight and activation bit-width, while FGO refers to the proposed frequency-guided optimization.

Scale Model W/A Set5 Set14 BSD100 Urban100 Manga109 LSDIR DIV2K

×4

SwinIR [3] 8/8 32.36/.8952 28.71/.7837 27.65/.7386 26.41/.7951 30.76/.9115 26.36/.7649 30.55/.8402
CRAFT w/o FGO 8/8 32.45/.8967 28.77/.7848 27.69/.7398 26.47/.7968 30.98/.9134 26.38/.7659 30.58/.8402

SwinIR [3] 6/6 31.94/.8775 28.43/.7686 27.45/.7246 26.10/.7784 29.98/.8876 26.16/.7490 30.14/.8225
CRAFT w/o FGO 6/6 32.00/.8816 28.49/.7718 27.49/.7276 26.14/.7800 30.21/.8924 26.15/.7504 30.18/.8242

SwinIR [3] 4/4 28.99/.7583 26.59/.6659 25.97/.6238 24.37/.6586 26.49/.7383 24.83/.6346 27.75/.6897
CRAFT w/o FGO 4/4 28.95/.7771 26.79/.6892 26.27/.6505 24.42/.6772 27.07/.7731 24.87/.6541 27.96/.7199

Regarding the boundary refinement stage, we initially
compare our training strategy with PTQ4SR [26]. From the
table, it’s evident that with the same initial boundary values,
our proposed strategy achieves better performance across
all test datasets. Furthermore, the introduction of FGO
improves boundary refinement performance by providing
better initial boundary values. Additionally, we visualize
the HFERB output to further evaluate the superiority of our
FGO method over CRAFT, as depicted in Fig. 13. From the
figure, it’s apparent that implementing FGO preserves more
high-frequency information in the quantized model, making
it more similar to the full-precision model. This observation
suggests that combining quantization strategies with FGO
leads to improved performance.

6.6.2 General Transformer-based SR PTQ Strategy

In this section, we extend our frequency-guided PTQ strate-
gies to a general quantization approach for transformer-
based SISR methods. Specifically, CRAFT utilizes high-
frequency priors to enhance its performance, a characteristic
derived from its reliance on specialized modules designed
to exploit high-frequency information. In contrast, standard
transformer models for SISR do not integrate such modules,
making high-frequency optimization unnecessary for them.
Therefore, we choose to exclude the FGO from our gener-
alized PTQ strategy for these models. Instead, we enforce
MAE constraints within the feature domain across all layers
during the ADC stage, while retaining all other previously
established strategies. Subsequently, we apply the general-
ized PTQ strategy to transformer-based SR models such as
SwinIR [3] and CRAFT. We conduct comprehensive perfor-
mance analyses at quantization levels of 8-bit, 6-bit, and 4-
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Fig. 14. Hardware performance of CRAFT and SwinIR on AMD Ryzen 5
5600U CPU. The red diamond and blue triangle represent the speedup
ratio of CRAFT and SwinIR. The quantized model consistently acceler-
ates processing across various batch sizes.

TABLE 12
Comparison of PTQ with different training strategies. “Regular” refers to

full-precision training, while “AMP” stands for Automatic Mixed
Precision training. “Prec.” denotes the precision value.

Model Prec. Model Size Set14 BSD100 Manga109

Regular FP32 3.37M 28.85/.7872 27.72/.7418 31.18/.9168

AMP FP16 1.81M 28.83/.7871 27.71/.7416 31.13/.9160
FP8 1.51M 28.15/.7708 27.29/.7266 29.16/.8888

PTQ INT8 1.13M 28.80/.7850 27.68/.7397 31.06/.9141

bit using seven commonly used test datasets, as outlined
in Table 11. From the table, it is evident that all models
maintain a similar level of performance, demonstrating the
effectiveness of our general PTQ strategies in adapting to
transformer-based SR methods. Particularly noteworthy is
the comparison between CRAFT and SwinIR under the
same quantization conditions, where CRAFT consistently
exhibits superior performance across nearly all datasets,
thus affirming its effectiveness and robustness.

6.6.3 Analysis of Quantized Acceleration
The primary goal of this evaluation was to assess the effects
of quantization on resource-constrained platforms, such as
portable PC CPUs, which more closely resemble the typical
deployment scenarios for quantized models. While 8-bit
quantization is also applicable to GPUs, our initial focus
was to investigate the performance of quantized models on
hardware with more limited resources. Due to limitations
in current hardware, which offers limited support for fully
quantized models, especially for lower-bit operations (e.g.,
6-bit or 4-bit), we restricted our quantization to 8-bit for
this study. The tests were performed on input images sized
128× 128, applying a ×4 super-resolution. The acceleration
results are presented in Fig. 14, where we compared our
CRAFT model with SwinIR [3] to evaluate the effectiveness
of our quantization technique. The quantized INT8 model
consistently exhibited lower latency compared to the full-
precision FP32 model, achieving a speed improvement of
up to 24%. However, the actual speedup fell short of theo-
retical expectations. We believe this is due to several factors,
including limitations in INT8 batch matrix multiplication

and the presence of non-quantizable operations, such as
softmax and LayerNorm, which reduce the overall acceler-
ation potential of INT8 quantization during inference. To
further highlight the advantages of PTQ, we performed
additional comparisons with models trained using the Au-
tomatic Mixed Precision (AMP) strategy, which is widely
used in model training [33], [57], [58]. As shown in Table 12,
the models were trained with AMP in both FP16 and
FP81. While AMP-trained FP16 models demonstrated only
a slight performance decrease compared to full-precision
models, FP8 showed significant degradation. In contrast,
PTQ achieved notably smaller model sizes while main-
taining competitive performance. These results emphasize
PTQ’s superior efficiency, offering clear advantages in terms
of both performance and model size over floating-point
models.

7 CONCLUSION AND FUTURE WORKS

This study systematically explores how frequency infor-
mation affects the performance of CNN and transformer
structures in single image super-resolution (SISR). It reveals
that while transformer structures excel at capturing low-
frequency information, they struggle with reconstructing
high-frequency details compared to CNNs. To tackle this
limitation, we introduce a novel transformer variant called
cross-refinement adaptive feature modulation transformer
(CRAFT). CRAFT comprises three main components: the
high-frequency enhancement residual block (HFERB) for
extracting high-frequency features, the shift rectangle win-
dow attention block (SRWAB) for capturing global repre-
sentations, and the hybrid fusion block (HFB) which re-
fines global representation by treating HFERB output as
a high-frequency prior and SRWAB output as key and
value for inter-attention. Furthermore, to simplify the in-
herent complexity of transformers, we propose a frequency-
guided post-training quantization (PTQ) strategy. It in-
volves adaptive dual clipping and boundary refinement,
enhance CRAFT’s efficiency. Additionally, we extend our
PTQ strategies to serve as general quantization methods for
transformer-based SISR approaches. Experimental results
demonstrate CRAFT’s superiority over existing methods
in both full-precision and quantization scenarios. Further
experiments validate the effectiveness of our PTQ approach
and the versatility of its extended version. Future work
include but are not limited extending the application of our
frequency-guided PTQ strategies to a wide range of models
and tasks, aiming to conduct thorough efficacy evaluations.
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