
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

PSRR-MaxpoolNMS++: Fast Non-Maximum
Suppression with Discretization and Pooling

Tianyi Zhang, Chunyun Chen, Yun Liu, Xue Geng, Mohamed M. Sabry Aly, Jie Lin

Abstract—Non-maximum suppression (NMS) is an essential post-processing step for object detection. The de-facto standard for NMS,
namely GreedyNMS, is not parallelizable and could thus be the performance bottleneck in object detection pipelines. MaxpoolNMS is
introduced as a fast and parallelizable alternative to GreedyNMS. However, MaxpoolNMS is only capable of replacing the GreedyNMS
at the first stage of two-stage detectors like Faster R-CNN. To address this issue, we observe that MaxpoolNMS employs the process
of box coordinate discretization followed by local score argmax calculation, to discard the nested-loop pipeline in GreedyNMS to enable
parallelizable implementations. In this paper, we introduce a simple Relationship Recovery module and a Pyramid Shifted MaxpoolNMS
module to improve the above two stages, respectively. With these two modules, our PSRR-MaxpoolNMS is a generic and parallelizable
approach, which can completely replace GreedyNMS at all stages in all detectors. Furthermore, we extend PSRR-MaxpoolNMS to
the more powerful PSRR-MaxpoolNMS++. As for box coordinate discretization, we propose Density-based Discretization for better
adherence to the target density of the suppression. As for local score argmax calculation, we propose an Adjacent Scale Pooling
scheme for mining out the duplicated box pairs more accurately and efficiently. Extensive experiments demonstrate that both our PSRR-
MaxpoolNMS and PSRR-MaxpoolNMS++ outperform MaxpoolNMS by a large margin. Additionally, PSRR-MaxpoolNMS++ not only
surpasses PSRR-MaxpoolNMS but also attains competitive accuracy and much better efficiency when compared with GreedyNMS.
Therefore, PSRR-MaxpoolNMS++ is a parallelizable NMS solution that can effectively replace GreedyNMS at all stages in all detectors.

Index Terms—Non-maximum suppression, object detection, fast NMS, parallelizable NMS

✦

1 INTRODUCTION

O BJECT detection is one of the most fundamental tasks in
computer vision, with the objective of localizing and classi-

fying objects in a scene. In the last decade, deep neural networks
have emerged as the champion of object detection [2]–[4]. Deep-
learning-based object detectors can be broadly grouped into either
one-stage detectors like SSD [4] and YOLO [5] or two-stage
detectors like Faster R-CNN [3] and R-FCN [6], in which neural
networks often account for the majority of computing operations.
On the other side, significant progress has been made towards
better-performing dedicated hardware for accelerating the basic
network operations (e.g., convolution, fully-connected layer, and
pooling) by exploiting their inherent parallelism, such as GPUs
and Google TPUs [7]. As a result, the execution time spent on
network operations is decreasing rapidly, e.g., at milliseconds.

Non-maximum suppression (NMS), as a must-have post-
processing technique in deep-learning-based object detectors, is

• This work was supported by the National Natural Science Foundation
of China (Grant No. 62202024), the Fundamental Research Funds for
the Central Universities, and the Agency for Science, Technology and
Research (A*STAR) under its MTC Programmatic Funds (Grant No.
M23L7b0021).

• T. Zhang is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China. (E-mail: zhang tianyi@buaa.edu.cn)

• C. Chen and M. Aly are with the School of Computer Science and En-
gineering, Nanyang Technological University (NTU), Singapore, 639798.
(E-mail: chunyun001@e.ntu.edu.sg; msabry@ntu.edu.sg)

• Y. Liu is with the College of Computer Science, Nankai University, Tianjin
300350, China. (E-mail: vagrantlyun@gmail.com)

• X. Geng and J. Lin are with the Institute for Infocomm Research (I2R),
Agency for Science, Technology and Research (A*STAR), Singapore,
138632. (E-mail: geng xue@i2r.a-star.edu.sg; jie.dellinger@gmail.com)

• Corresponding author: Yun Liu (E-mail: vagrantlyun@gmail.com).
• A preliminary version of this work has been published on CVPR 2021 [1].

Manuscript received May 12, 2023; revised Sep 19, 2024.

likely to become the performance bottleneck in object detection
pipelines [8]. The de-facto standard for NMS, namely Gree-
dyNMS, mainly follows a nested-loop pipeline which is inefficient
to implement. Such a nested-loop pipeline greedily picks out the
box candidate with the highest confidence score and removes the
boxes heavily overlapped with the picked one. Each iteration picks
out only one box. More importantly, it is difficult to parallelize and
accelerate the nested-loop pipeline with parallelism-friendly hard-
ware like GPUs. Thus, GreedyNMS would gradually dominate
the execution time of deep-learning-based object detectors [8], as
neural networks run faster thanks to the increasing parallelism on
dedicated hardware (e.g., from P100 to V100 GPUs).

To address this problem, MaxpoolNMS [8] is proposed as a
fast and parallelizable alternative to GreedyNMS, which discards
the nested-loop pipeline. It is inspired by the observation that
bounding boxes with high confidence scores correlate to peak
values on the so-called confidence score maps, in which the
spatial relationships among anchor boxes are preserved. Therefore,
NMS can be designed as simple max-pooling on the confidence
score maps, which is efficient and inherently parallel. However,
MaxpoolNMS [8] is dedicated only to replacing GreedyNMS at
the first stage of two-stage detectors, e.g., the GreedyNMS after
the Region Proposal Network (RPN) in Faster R-CNN [3]. There
is a significant drop in detection accuracy when directly applying
MaxpoolNMS to the final predicted bounding boxes. This lowers
the value of MaxpoolNMS because it cannot be used to replace
GreedyNMS at all stages in all detectors.

The objective of this paper is a fast and parallelizable NMS
approach that can be applied to all stages of two-stage object
detectors as well as one-stage detectors. For this goal, we propose
PSRR-MaxpoolNMS, an alternative to MaxpoolNMS [8] to com-
pletely replace GreedyNMS at all stages of all detectors, instead



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Fig. 1. Pipeline of our PSRR-MaxpoolNMS++ for object detection.
Density-based Discretization allocates bounding boxes into discrete
centers, followed by Adjacent Scale Pooling to eliminate overlapped
boxes effectively and efficiently.

of only at the first stage of two-stage detectors like MaxpoolNMS
[8]. The proposed PSRR-MaxpoolNMS follows the scheme of box
coordinate discretization and then local score argmax calculation
to discard the nested-loop pipeline in GreedyNMS for accelera-
tion. Box coordinate discretization refers to allocating boxes into
discrete centers based on the box locations, scales, and shapes to
form confidence score maps. Local score argmax calculation refers
to picking out the box with the maximum confidence score within
certain neighboring ranges of box coordinates (e.g., max-pooling
keeps the box with the maximum score within each pooling
window). Inspired by MaxpoolNMS [8], our PSRR-MaxpoolNMS
proposes Relationship Recovery and Pyramid Shified Maxpool-
NMS to improve the above two stages, respectively. Specifically,
Relationship Recovery resolves the mismatch problem in con-
fidence score maps caused by the fact that MaxpoolNMS [8]
projects anchor boxes to score maps without consideration of box
regression. Pyramid Shified MaxpoolNMS resolves the difficulty
of maximizing the score map sparsity caused by the fact that
MaxpoolNMS [8] only uses a single-scan max-pooling on the
confidence score maps. PSRR-MaxpoolNMS has been published
in our preliminary conference paper [1].

Although PSRR-MaxpoolNMS has been generalized to have
almost the same application capability as GreedyNMS, it still has
potential drawbacks in detection accuracy and efficiency. First,
the discretization stage, Relationship Recovery, is anchor-based
discretization, which means the discrete scale/ratio centers are
inherited from the anchor box settings in detectors. It only relies
on the empirical scale/ratio settings of anchor boxes, which cannot
directly adapt to the target density. Second, the local argmax
calculation stage sequentially performs multiple types of max-
pooling, which does not consider the distribution of candidate
boxes and is thus redundant and ineffective. In this paper, we
make plentiful extensions over our preliminary conference ver-
sion PSRR-MaxpoolNMS. Our new approach is also a generic
NMS acceleration approach for all stages of all object detectors,
dubbed as PSRR-MaxpoolNMS++. The overall pipeline of our
new approach is illustrated in Fig. 1. PSRR-MaxpoolNMS++
improves both the box coordinate discretization and local score
argmax calculation for better detection accuracy and efficiency.
Besides, we extend PSRR-MaxpoolNMS++ to SoftNMS [9] to

show its generic acceleration effect. The improvement of PSRR-
MaxpoolNMS++ over PSRR-MaxpoolNMS can be summarized
as follows:

• Box coordinate discretization – PSRR-MaxpoolNMS++ in-
troduces Density-based Discretization to calculate discrete
centers based on the target density that the suppression
process aims to achieve.

• Local score argmax calculation – PSRR-MaxpoolNMS++
presents Adjacent Scale Pooling to effectively and efficiently
identify the local ranges of local score argmax calculation.

• Extension to SoftNMS – We extend our discretization and
local argmax calculation to SoftNMS [9] to show its generic
acceleration effect.

PSRR-MaxpoolNMS++ significantly improves the performance
of PSRR-MaxpoolNMS. It achieves comparable detection ac-
curacy to GreedyNMS while being parallelizable. Both PSRR-
MaxpoolNMS and PSRR-MaxpoolNMS++ avoid the nested-loop
pipeline in GreedyNMS. PSRR-MaxpoolNMS++ has much fewer
rounds of iterations than PSRR-MaxpoolNMS, leading to faster
speed. The detailed comparisons of various NMS approaches are
listed in Table 1. Our approaches are generic to all stages of
various object detectors with much-improved efficiency.

2 RELATED WORKS

2.1 One-stage and Two-stage Object Detectors
Deep-learning-based object detection frameworks can be roughly
classified into one-stage detectors and two-stage detectors. Two-
stage detectors [2], [3], [10]–[13], like Faster R-CNN [3] and
Mask R-CNN [10], are based on the class-agnostic region pro-
posals. The region proposals are the candidate bounding boxes
that potentially enclose target objects. R-CNN [13] and Fast R-
CNN [2] employ hand-crafted region proposal generation [14],
[15]. Instead, Faster R-CNN [3] generates region proposals by
training a built-in RPN. The features of object proposals are
fed into the subsequent detection network to predict the final
box coordinates and class-specific probabilities for each proposal.
Some works [11], [12] strive to enhance the detection performance
by leveraging contextual cues and regularization strategies. One-
stage detectors, like SSD [4] and YOLO [5], skip the region
proposal stage in two-stage detectors and directly detect objects
over a dense sampling of anchor locations. One-stage detectors
usually have faster inference speed than two-stage detectors,
possibly sacrificing detection accuracy.

2.2 Non-maximum Suppression
The final goal of object detectors is to output exactly one bound-
ing box to tightly enclose each target object. However, most
deep-learning-based object detection pipelines tend to generate
redundant highly-overlapped bounding boxes to enclose an object,
thus introducing a large number of false positives. Non-maximum
suppression (NMS) is an essential step to suppress the redundant
bounding boxes. NMS is usually applied either to pre-filtering
the class-agnostic proposals to increase the efficiency or post-
processing the final class-specific predictions to improve the
detection accuracy.

The most widely used NMS method is GreedyNMS [16].
GreedyNMS first sorts the boxes by their confidence scores
in descending order, then iteratively selects the most confident
predictions from the remaining boxes and eliminates all the other



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE 1
Comparison of different NMS approaches. The comparisons are made in aspects of the overall pipeline, application scenarios, complexity, and

technical details. SC: Single-Channel MaxpoolNMS; CR: Cross-Ratio MaxpoolNMS; CS: Cross-Scale MaxpoolNMS; All: Cross-all-Channel
MaxpoolNMS; ASP: Adjacent Scale Pooling; SF: Shifted MaxpoolNMS.

Methods GreedyNMS MaxpoolNMS [8] PSRR-MaxpoolNMS PSRR-MaxpoolNMS++

General pipeline

Nested loop ✓ × × ×
Parallelizable × ✓ ✓ ✓

Arbitrary detectors/stages ✓ × ✓ ✓

Discretization
Anchor-based discre. - ✓ ✓ ×
Density-based discre. - × × ✓

Local-argmax calculation
Pooling types - SC/CR/CS

SC (+SF)
+CR (+SF)
+CS (+SF)
+All (+SF)

ASP (+SF)

Scan types Until exhausted 1 8 2

Extension to SoftNMS ✓ - - ✓

boxes that have a large overlap with the selected ones. This
iteration terminates after the left boxes are exhausted or we
have picked out a sufficient number of boxes. There are some
variants of NMS to increase the detection accuracy [9], [17]–[20].
SoftNMS [9] decreases the scores of the boxes to be suppressed,
instead of deleting these boxes by hard thresholding. Adaptive
NMS [17] learns to adaptively set the box selection threshold
according to the object density. Hosang et al. [18] reformulates
NMS as a convnet that can be trained end to end. Visibility Guided
NMS [19] leverages the detection of the whole objects as well as
the detection of the visible parts to tackle the problem of highly
occluded object detection. FeatureNMS [20] leverages the feature
embedding distance to determine whether to suppress or keep the
candidate boxes. However, these NMS methods need to form a
nested-loop iteration, which is hard for parallel implementation
when considering real-world deployment.

When it comes to NMS acceleration for practical deployment,
it has been less explored. MaxpoolNMS [8] switches GreedyNMS
to simple max-pooling on the score maps which encode confidence
scores, scales, ratios, and spatial locations of anchor boxes. After
max-pooling, only boxes with peak scores are kept and the others
are suppressed. MaxpoolNMS is a fast and parallelizable NMS
approach. However, it is only confined to the first stage RPN
of the two-stage detectors. When applied to one-stage detectors
or the second stage of the two-stage detectors, it would lead to
performance degradation. We review MaxpoolNMS in detail in
§3.1 and discuss its limitations in §3.2. Hash-NMS [21] maps
each box into different hash cells and removes the non-maximum
boxes within each hash cell. It aims to perform pre-filtering before
the GreedyNMS to accelerate the detection on the crowded data.
In this paper, we focus on NMS acceleration. Different from
MaxpoolNMS [8] and Hash-NMS [21], our proposed approach
could be applied to the final detection stage for both one-stage and
two-stage detectors to directly filter the detection results.

2.3 End-to-end Object Detection
Recently, end-to-end object detection approaches have achieved
competitive performance. These approaches directly output the
sparsely aligned bounding-box predictions without the need of
NMS for duplicate removal. DETR [22] totally discards NMS
based on the vision transformer (self-attention) mechanism as well
as the bipartite matching between box predictions and ground

truths. However, it suffers from the failure of small object de-
tection and slow training convergence. To tackle these problems,
many variants of DETR are proposed to enhance the learning of
one-to-one matching. Deformable DETR [23] narrows the search
range of each object query to a small set of feature points. DN-
DETR [24] and DINO [25] demonstrate that the slow convergence
comes from the one-to-one matching and thus propose denois-
ing techniques to improve the performance. Group DETR [26]
constructs group-wise one-to-many label assignments to utilize
multiple positive object queries. Co-DETR [27] utilizes the one-
to-many detectors to guide the training of end-to-end detectors.

Although end-to-end detectors show promising performance,
it is still important to investigate and explore NMS techniques.
The current one-to-one assignment approach is not efficient for
training, hence a one-to-many approach along with NMS filtering
has been proposed to address this issue [28], [29]. One-to-many
detectors still outperform end-to-end detectors [30], [31] in terms
of model size, inference speed, and accuracy, making them pop-
ular in real-world applications. Therefore, this paper focuses on
improving the efficiency of object detection by accelerating NMS.

3 PSRR-MAXPOOLNMS
In this section, we first briefly review MaxpoolNMS [8] in §3.1
and analyze its limitations in §3.2. Then, we introduce our PSRR-
MaxpoolNMS to address the limitations. PSRR-MaxpoolNMS is
composed of two steps: Relationship Recovery in §3.3.1, followed
by Pyramid Shifted MaxpoolNMS in §3.3.2. It is worth noting
that the spatial index and the channel of the score map refer to the
discrete centers in the box coordinate discretization stage.

3.1 Revisiting MaxpoolNMS
MaxpoolNMS [8] is a fast and parallelizable NMS approach,
which is specifically designed for removing the overlapped anchor
boxes at the first stage of Faster R-CNN detection pipeline [3],
i.e., the RPN. MaxpoolNMS is composed of two modules. First,
as illustrated in Fig. 2, it constructs a set of confidence score
maps, each of which corresponds to a specific combination of
anchor box scale and aspect ratio (i.e., channel c), and each cell
on the score map encodes the objectness score (i.e., cell value)
and spatial location (i.e., x and y on the map) of an anchor box
generated by the RPN. For instance, if we use 4 anchor box scales



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 2. Illustration of the score map mismatch problem in Maxpool-
NMS [8]. MaxpoolNMS projects an anchor box (dashed red) to a score
map with an aspect ratio of 1 : 2 (in coral), without consideration of box
regression. The regressed box (solid green) of the anchor has changed
in aspect ratio and is thus projected to another score map with an aspect
ratio of 1 : 1 (in blue). The projection of the regressed box is correct as it
encloses the object more accurately than its corresponding anchor box.

{642, 1282, 2562, 5122} and 3 aspect ratios {1 : 2, 1 : 1, 2 : 1}
for an RPN with a downsampling ratio of β (e.g., β = 16),
there are 12 confidence score maps with a width of ⌊W

β ⌉ and
height of ⌊H

β ⌉, where W and H denote the width and height of
the input image, respectively. Second, based on the observation
that objects correspond to peak scores on the confidence score
maps, MaxpoolNMS applies a simple max-pooling on the maps
to suppress anchor boxes with low scores and only keep anchor
boxes with peak scores.

The max-pooling in MaxpoolNMS has three choices: 1)
Single-Channel MaxpoolNMS applies max-pooling on each score
map (channel) independently; 2) Cross-Ratio MaxpoolNMS con-
catenates score maps at two neighboring aspect ratios for each
scale, followed by 3D max-pooling on the concatenated maps;
3) Cross-Scale MaxpoolNMS concatenates score maps at two
neighboring scales for each aspect ratio, followed by 3D max-
pooling on the concatenated maps. After max-pooling, the anchor
boxes remaining on the score maps are combined and sorted by
their scores in descending order. Only the top boxes are returned
as final detections.

3.2 Limitations of MaxpoolNMS

Though MaxpoolNMS [8] is more efficient than GreedyNMS by
using the max-pooling operations, MaxpoolNMS suffers from a
shortcoming that it is dedicated only to replacing GreedyNMS
at the first stage of two-stage object detectors. To maintain
high detection accuracy, GreedyNMS is still a must-have post-
processing method for the second stage of two-stage detectors and
one-stage detectors such as SSD [4]. This makes MaxpoolNMS
less attractive in the sense that it cannot be utilized to replace
GreedyNMS at all stages in all detectors.

We observe that the detection accuracy drops significantly
when applying MaxpoolNMS [8] at the second stage of two-
stage detectors. Specifically, we adopt MaxpoolNMS after the
second stage of Faster R-CNN [3] to remove overlapped boxes.
As shown in Table 3, MaxpoolNMS performs significantly worse
than GreedyNMS, with an over 40% drop in detection accuracy.
We find that there are two key factors that may lead to the
unsatisfactory performance of MaxpoolNMS [8], i.e., the score
map mismatch and the difficulty of maximizing the score map
sparsity with a single-scan max-pooling:

Fig. 3. Relationship Recovery to solve the score map mismatch.

• Score map mismatch. This occurs during the construction of
confidence score maps. MaxpoolNMS projects anchor boxes
to score maps without consideration of box regression. This
leads to the score map mismatch problem if the regressed
boxes corresponding to the anchor boxes have changed dra-
matically in location, scale, or aspect ratio. Fig. 2 shows an
example of a change in ratio. The mismatch would cause
wrong box projections on score maps, which in turn bring in
negative effects on the following max-pooling operations.

• Low sparsity of score maps. Since MaxpoolNMS operates
only a single-scan max-pooling on the confidence score
maps, it is hard to achieve high sparsity on dense score maps,
leading to a lot of highly-overlapped boxes remained after
pooling, as illustrated in the left of Fig. 4 (i.e., max-pooling
with the single channel only). Moreover, a single-scan max-
pooling on the confidence score maps would cause the edge
effect. As shown in Fig. 5 left, the boxes in the adjacent cells
are both kept after max-pooling, even though one of them is
considered a duplication.

3.3 Our PSRR-MaxpoolNMS

3.3.1 Discretization: Relationship Recovery
Instead of projecting anchor boxes to the confidence score maps,
our Relationship Recovery projects the regressed boxes to the
maps, which solves the score map mismatch problem. With the
help of box regression, the regressed boxes in general enclose the
objects more accurately than their corresponding anchor boxes.
As such, the score maps projected by the regressed boxes are
able to better reflect the actual spatial and channel (a combination
of scale and aspect ratio) relationships. Suppose the coordinates
of the ith regressed box bi is represented as [xc

i , y
c
i , wi, hi] ,

where xc
i , y

c
i denotes the spatial position of the box center and

wi, hi denotes the box width, height, respectively. Concretely, the
Relationship Recovery module consists of three parts: spatial and
channel recovery to infer the spatial index [Xi, Yi] and the channel
[Si, Ri] which a regressed box should be mapped to, followed by
the score assignment which assigns the confidence score to each
cell in the maps. Here, Si (or Ri) is the index of the discrete scale
(or ratio) center assigned to. This process is depicted in Fig. 3.

Spatial Recovery. MaxpoolNMS [8] projects anchor boxes to
wrong spatial locations on the score map due to the dramatic
shift of locations after box regression. To address this location
mismatch problem, Spatial Recovery maps the spatial location
[xc

i , y
c
i ] to the spatial index [Xi, Yi] on the score map as

Xi = ⌊x
c
i

β
⌋, Yi = ⌊y

c
i

β
⌋, (1)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Fig. 4. Illustration of Pyramid MaxpoolNMS. A sequence of max-pooling is operated one after another on the confidence score maps, with
different channel combinations and pooling parameters (kernel size and stride) determined by the scale (s) and ratio (r) of the map. As can be
seen, the confidence score maps become more and more sparse with the Pyramid MaxpoolNMS (i.e., multi-scan max-pooling).

where β is the downsampling ratio of the score maps.

Channel Recovery. MaxpoolNMS [8] determines the projected
channel based on the default scale and ratio of the anchor box.
However, the channel projection could be wrong if the corre-
sponding regressed box has changed dramatically in scale and/or
ratio. To solve this channel mismatch problem, Channel Recovery
calculates the nearest scale Si to wi × hi and the nearest ratio Ri

to hi

wi
based on Euclidean-distance, and chooses [Si, Ri] as the

projected channel.

Score Assignment. After the spatial locations and channels
for all boxes are determined, each cell in the maps could have
more than one box projected to it. Therefore, score assignment is
introduced to only keep the box with the highest score in each
cell. One may note that the score assignment is basically 1 × 1
max-pooling in each cell of the score maps, thus it can be treated
as a pre-filtering step for removing overlapped boxes that are easy
to identify.

Remarks. All operations of the relationship recovery are simple
and parallelizable. Besides, the relationship recovery is anchor-
free. In other words, as the first step of our PSRR-MaxpoolNMS,
it opens up a possibility to extend PSRR-MaxpoolNMS from
anchor-based one-stage or two-stage object detectors to anchor-
free object detectors [32], [33], because the construction of con-
fidence score maps does not rely on anchor boxes at all. Instead,
it only requires the locations and sizes of regressed boxes, which
are accessible in anchor-free detectors as well.

3.3.2 Local Score Argmax: Pyramid Shifted MaxpoolNMS
We propose Pyramid Shifted MaxpoolNMS to remove overlapped
boxes on the confidence score maps, in which the Pyramid Max-
poolNMS aims to thoroughly suppress overlapped boxes across
channels (scales and ratios), while the Shifted MaxpoolNMS aims
to effectively eliminate overlapped boxes in the spatial domain
by addressing the edge effect problem. After Pyramid Shifted
MaxpoolNMS, the score maps become highly sparse, with only
a small number of non-zero cells. The boxes in the non-zero cells
are returned as final detections.

Pyramid MaxpoolNMS. Pyramid MaxpoolNMS is based on
the max-pooling methods proposed by MaxpoolNMS [8]. Since
each score map is dedicated to a specific anchor box size, the
kernel size and pooling stride for max-pooling on that score map

are determined by its associated anchor box size. Given the scale-
ratio pair [S,R] of the anchor boxes on a specific score map,
the width and height of the corresponding anchor boxes (ŵ, ĥ) is
defined as

ŵ(S,R) =

√
S

R
, ĥ(S,R) =

√
SR. (2)

The corresponding kernel size (Kx,Ky) are defined as

Kx(S,R) = max(⌈αŵ(S,R)

β
⌋, 1),

Ky(S,R) = max(⌈αĥ(S,R)

β
⌋, 1),

(3)

where Kx and Ky are the kernel sizes (as well as pooling strides)
in x and y directions, respectively. The parameter α represents the
overlap threshold, which is used to control the trade-off between
precision and recall. A larger α would suppress more overlapped
boxes (leading to higher precision) but at the risk of missing object
detections (leading to lower recall).

Although MaxpoolNMS [8] can suppress redundant boxes
using max-pooling operations, it has some shortcomings. On one
hand, MaxpoolNMS [8] operates only a single-scan max-pooling
on the confidence score maps. On the other hand, MaxpoolNMS
assumes that overlapped boxes exist only in the channels with
neighboring scales (or ratios) and the same ratio (or scale), which
is not always true as the overlapped boxes can distribute at arbi-
trary scales and ratios to some extent. As such, a single-scan max-
pooling operation with an invalid assumption may be insufficient
to suppress all overlapped boxes, resulting in low sparsity of
the score maps after pooling. Even though one can increase the
overlap threshold α in Eq. (3) to induce higher sparsity, this could
lead to the risk of missing true positive detections.

We propose Pyramid MaxpoolNMS to progressively induce
sparsity in the score maps by performing a sequence of max-
pooling operations one after another on the score maps with differ-
ent channel combinations, as illustrated in Fig. 4. The sequence of
max-pooling operations starts with Single-Channel max-pooling,
followed by Cross-Ratio and Cross-Scale max-pooling, and ends
with Cross-all-Channels max-pooling. As introduced in §3.1,
Single-Channel max-pooling operates on a single score map inde-
pendently, while Cross-Ratio and Cross-Scale max-pooling oper-
ate on multiple score maps by concatenating channels at adjacent



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 5. Shifted MaxpoolNMS to alleviate the edge effect. Left: The
boxes in the adjacent cells are both kept after max-pooling with the
kernel size 2 × 2 and stride 2. Right: By adding another max-pooling
with one cell shift, the box with the higher score is kept, while the other
one is suppressed.

ratios and scales, respectively. In addition, we introduce Cross-
all-Channels max-pooling which performs max-pooling across
all channels. In this way, our Pyramid MaxpoolNMS gradually
increases the “receptive field” of the pooling operations from local
(single score map) to global (all maps), without requiring any
assumption on the distribution of overlapped boxes.

When performing max-pooling on the single channel indepen-
dently, the kernel size and stride for each channel are set as in
Eq. (3). When performing max-pooling across multiple channels,
the kernel size (or stride) is set as the minimum of kernel sizes
(or strides) of the channels concatenated. On one hand, if the
kernel size is larger than the minimum value, it may suppress true
positives detected by the precedent Single-Channel max-pooling.
On the other hand, the larger the gap between scales/ratios, the
less likely to have overlapped boxes. Therefore, a small kernel
size (or stride) could reduce the risk of suppressing true positives.

Shifted MaxpoolNMS. Shifted MaxpoolNMS can further in-
crease the sparsity of confidence score maps and thus eliminate
overlapped boxes in the spatial domain (X,Y ) more effectively.
This is achieved by introducing additional max-pooling with a
spatial shift on the confidence score maps, which in turn addresses
the edge effect problem, as shown in Fig. 5. Specifically, given
a kernel size k, the shifted max-pooling is operated on the score
maps padded with ⌊k

2 ⌉ zeros around the border. Finally, the shifted
max-pooling can be appended after each pooling operation in the
sequence of Pyramid MaxpoolNMS.

4 PSRR-MAXPOOLNMS++
In this section, we first extend our PSRR-MaxpoolNMS to PSRR-
MaxpoolNMS++ using the new Density-based Discretization for
box coordinate discretization and Adjacent Scale Pooling for local
score argmax calculation, as in §4.1. Then, we provide discussions
about the underlying intuitions of PSRR-MaxpoolNMS++ in §4.2.
Next, we introduce how to extend our discretization and local
score argmax techniques to SoftNMS [9] in §4.3, suggesting the
generality of our method. Finally, we present how to implement
our method in §4.4.

4.1 From PSRR-MaxpoolNMS to PSRR-MaxpoolNMS++

Although our PSRR-MaxpoolNMS improves MaxpoolNMS [8] in
terms of both discretization and local argmax calculation, PSRR-
MaxpoolNMS still has the following shortcomings. As for the Re-
lationship Recovery step, anchor-based discretization is irrelevant

Fig. 6. Illustration of Density-based Discretization. The discretization
interval (resolution) is decided by the target suppression density. The
smaller the density (the overlap of the filtered box), the more likely the
input un-suppressed boxes are allocated into the same discrete centers
(cells in the figure). The non-maximum boxes within the same cell are
more likely to be suppressed.

to the target density that the suppression process aims to achieve.
The inappropriate setting of discrete centers may result in wrongly
removing the true positives or keeping the false positives. As for
the Pyramid max-pooling step, first, the Cross-all-Channels max-
pooling is likely to wrongly suppress the true positives because
the box pairs with dramatically different scales are not likely to
be largely overlapped. Second, the scanning scheme with pyramid
pooling is redundant and ineffective. Although Single-Channel,
Cross-Ratio, and Cross-Scale max-pooling try to eliminate the
duplicates under various settings, the combination of such three
max-pooling always fails to completely remove redundant boxes
in our observation.

To address the above shortcomings, we further extend PSRR-
MaxpoolNMS to PSRR-MaxpoolNMS++ to improve its efficiency
and accuracy. We inherit the core ideas of discretization and local
argmax calculation in PSRR-MaxpoolNMS. The discretization is
used to enable batch processing of box suppression, rather than
calculating the overlap ratio for each individual pair of boxes. The
local argmax calculation can identify all peaks in the confidence
score map by a single scan of max-pooling, unlike GreedyNMS,
which picks out a single candidate at a time. Moreover, local
argmax can also foster parallelism due to the natural ability of the
max-pooling operation. Here, we focus on two issues: 1) How to
set a better interval between discrete centers? 2) How to effectively
and efficiently define the local range of local argmax calculation?
We tackle these issues by proposing Density-based Discretization
and Adjacent Scale Pooling to improve the discretization and local
score argmax calculation, respectively.

4.1.1 Discretization: Density-based Discretization
In the Density-based Discretization step illustrated in Fig. 6, we
allocate the boxes to discrete centers. The boxes assigned to the
same discrete center are of similar scales/ratios and could be
suppressed in batches with the same parameter setting. For the
ith input un-supressed box bi, we follow Relationship Recovery
in §3.3.1 to calculate the discrete location [Xi, Yi, Si, Ri]. We
define a fixed set of discrete centers in both scales and aspect
ratios and assign the box bi to the Si-th discrete scale center and
the Ri-th discrete ratio center.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 7. Illustration of Adjacent Scale Pooling. The max-pooling oper-
ation is performed over the boxes assigned to adjacent discrete scale
centers (channels). The shifted pooling is also applied to further in-
crease the pooling sparsity.

The definition of discrete centers is crucial for the box feature
representation and suppression performance. We propose Density-
based Discretization by setting the discrete centers based on the
target density. We apply Density-based Discretization to set the
discrete scale centers. The set of discrete scale centers is expressed
as {210 × δ2j |j = 0, 1, ..., N}, where δ indicates the interval
between adjacent scale centers, and N is dynamically set to satisfy
210 × δ2N−2 < 5122 ≤ 210 × δ2N . It is worth noting that,
compared to the anchor-based discrete scale centers, our density-
based discrete scale centers have a smaller minimum discrete
center (322 vs. 642). The motivation for this enlarged range is
to ensure that the discrete centers can more completely cover the
range of detected objects, thereby allowing each bounding box
to be assigned to a more appropriate discrete scale center. More
precise box-center assignment helps in setting accurate pooling
kernels and strides, which consequently improves suppression
accuracy. We aim to set the δ parameter according to the target
density. The reasonable setting is that δ should be the monocular
decreasing function of the target density: Given the same sup-
pression strategy, the larger δ is, the more likely the boxes are
assigned to the same discrete centers, and more boxes are likely to
be suppressed, which will finally result in decreasing suppression

density. In PSRR-MaxpoolNMS++, we define δ = 4

√
1

θ
, in which

θ is the target density parameter to determine the overlapping
extent of the suppressed boxes. The explanation of this definition
is provided in §4.1.2.

4.1.2 Local Score Argmax: Adjacent Scale Pooling

At the pooling step, we first identify a set of independent local
ranges based on the discretization result, followed by the argmax
calculation within each range for suppressing the non-maximum
box candidates by hard removal. Thus, the definition of the
local range is the key issue for the suppression performance.
Similar to PSRR-MaxpoolNMS, the suppression step of PSRR-
MaxpoolNMS++ is built on the max-pooling operation and the
local range is the discrete cubicle range defined by the max-
pooling kernels. We follow the same kernel/stride settings for each
individual discrete scale/ratio center as in PSRR-MaxpoolNMS
(Eq. (2) and Eq. (3)) and focus on the centers that the max-pooling
operation crosses.

Instead of a sequence of max-pooling operations in PSRR-
MaxpoolNMS, PSRR-MaxpoolNMS++ performs a single Adja-
cent Scale Pooling. As shown in Fig. 7, Adjacent Scale Pooling
is operated as follows: we perform max-pooling over the boxes
belonging to adjacent scale pairs. For each pair of adjacent discrete

scale centers, we group the boxes assigned to this pair regardless of
the aspect ratios and then perform max-pooling over the grouped
boxes. We scan all the adjacent discrete scale center pairs to
thoroughly enumerate the overlapped box pairs to maximize the
box sparsity. The reason for this design can be found in §4.2. As
mentioned above, the spatial kernel (or stride) is calculated as the
minimum value among the discrete scale-ratio pairs it operates
on. Same as PSRR-MaxpoolNMS, after each step of the max-
pooling scan, we perform an additional shifted max-pooling scan
to address the edge effect as mentioned in §3.3.2. Since α in
Eq. (3) determines the density of the suppressed boxes, it should be
adaptively set according to the target density. α should be within
the range of [0, 1] as there may exist overlap between suppressed
anchor boxes. Besides, α should be a monocular decreasing
function of the density parameter: Given the same suppression
strategy, the larger the α is, the more likely the boxes are covered
by the same pooling kernel, and more boxes are likely to be
suppressed, which will finally result in decreasing suppression
density. In this paper, we define α = 1 − θ, where θ is the target
density parameter.

With the above definition, we take the Adjacent Scale Pooling
for adjacent scale centers 210×δ2j and 210×δ2j+2 as an example
to explain the definition of δ in §4.1.1. Since each box is assigned
to its nearest scale center, the smallest scale of the boxes assigned
to scale center 210×δ2j is 210×(δ2j−2+δ2j)/2 = 29×(δ2j−2+
δ2j), and the largest scale of the boxes assigned to scale center
210×δ2j+2 is 210×(δ2j+2+δ2j+4)/2 = 29×(δ2j+2+δ2j+4).
Hence, the scale range of this scan of Adjacent Scale Pooling lies
between 29 × (δ2j−2 + δ2j) and 29 × (δ2j+2 + δ2j+4). For
simplicity, when considering boxes across adjacent scale centers,
we disregard other factors such as spatial shifts and aspect ratios.
Thus, the Intersection over Union (IoU) can be calculated as
δ2j−2 + δ2j

δ2j+2 + δ2j+4
=

1

δ4
, which is the ratio between the smallest

and largest box scales. If the density parameter θ approximates

the target IoU threshold, we have
1

δ4
= θ, equivalent to δ = 4

√
1

θ
.

When setting the α parameter, for simplicity, assume that two
identical overlapping anchor boxes only have a spatial shift in
one dimension (e.g., the horizontal dimension), while disregarding
factors such as differences in scale, aspect ratio, or spatial shift in
the other dimension. If the box height is h and the box width
is w, the shift in the horizontal dimension is α × w, and the
intersected area between the two boxes is (1 − α) × w × h. For
convenience, if the density parameter θ is interpreted as the ratio of
the intersection area to the box area (i.e., precision), we can derive
θ = (1−α)×w×h

w×h = 1 − α. Notably, there is a subtle difference
in the definition of θ between the settings of δ and α. However,
when setting δ in the ideal case, the smaller box can be entirely
enclosed by the larger box, where IoU is equivalent to precision.

Notably, in our PSRR-MaxpoolNMS++ approach, both the
box scale and the distance between boxes are correlated to the
target density. In the density-based discretization (§4.1.1), the
effect of the box scale is considered because the interval δ between
adjacent scale centers is set as the monocular decreasing function
of the target density. In the local score argmax calculation (§4.1.2),
the impact of the distance between boxes is considered when
adjusting the kernel sizes and strides of max-pooling using Eq. (3),
and the influence of the box scale is considered when determining
the scale centers that the max-pooing operation crosses.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. 8. Distribution of overlapped box pairs with IoU > 0.3 over discrete
scale centers generated from the PASCAL VOC dataset [34] with the
Faster R-CNN (ResNet-50 [35]) detector [3].

Fig. 9. Distribution of overlapped box pairs with IoU > 0.3 over discrete
ratio centers generated from the PASCAL VOC dataset [34] with the
Faster R-CNN (ResNet-50 [35]) detector [3].

TABLE 2
Statistics of scale/ratio similarity between the overlapped box

pairs with IoU > 0.3 generated from the PASCAL VOC dataset [34]
with the Faster R-CNN detector [3]. “mean”: the average similarity;

“std”: standard deviation.

ResNet-50 [35] ResNet-101 [35] ResNet-152 [35]
scale-mean 85.3% 89.1% 90.4%
scale-std 15.6% 12.7% 13.4%

ratio-mean 89.0% 90.7% 92.6%
ratio-std 11.6% 10.2% 10.1%

4.2 Discussion: Scale vs. Ratio

In both our Density-based Discretization and Adjacent Scale
Pooling, we emphasize the scale similarity instead of the ratio
similarity to estimate the overlap extent. In this part, we discuss
the empirical intuition of emphasizing scales.

We first calculate statistics of the overlapped boxes over the
discrete scale/ratio centers to show that the boxes with large
overlaps are usually distributed at adjacent scales and arbitrary
aspect ratios. We take the anchor-based discrete scale/ratio centers
in PSRR-MaxpoolNMS as an example. Here, the discrete scale
centers are {642, 1282, 2562, 5122} and the discrete ratio centers
are set as {0.5, 1, 2}. For each image, we calculate the IoU score
between each pair of un-suppressed candidate boxes and record
the discrete scale/ratio centers of largely overlapped pairs with
IoU > 0.3. Fig. 8 and Fig. 9 report the distributions of overlapped
pairs over discrete scale and ratio centers, respectively. As can be
observed, overlapped pairs are distributed across adjacent scale
centers and arbitrary ratio centers. Even a box pair assigned to
distant ratio centers (e.g., 0.5 vs. 2) still has the chance of largely
overlapping. However, a box pair assigned to distant scale centers
(e.g., 64 vs. 256) has no chance of largely overlapping. Thus,
we are motivated to perform the local argmax calculation across
adjacent scales regardless of the ratios.

We proceed by calculating statistics about the scale and ratio
similarity between the largely overlapped box pairs to show that
scale similarity is more difficult to achieve and thus receives
more attention to precisely define the adjacent scales. For each
pair of largely overlapped (e.g., IoU > 0.3) boxes, we evaluate
their scale/ratio similarity by the division between the smaller
and bigger values. The statistics of the scale/ratio similarity are
reported in Table 2. We can see that the largely overlapped box

pairs are similar in both scale and ratio (the mean similarity values
are both close to 100%). However, the ratios are more similar
(larger mean similarity) and clustered (smaller standard deviation)
over the scales. This indicates that ratio similarity among largely
overlapped pairs is more easily achieved by detectors and could
thus be discarded in identifying large overlapping extent. Thus, it
is vital to differentiate the scale difference to accurately identify
the largely overlapped boxes, which motivates us to investigate the
interval between adjacent scale centers by the target density.

4.3 Extension to SoftNMS
In this subsection, we extend our schemes of box coordinate
discretization and local score argmax calculation to SoftNMS [9].
The original SoftNMS follows the following pipeline. For each
iteration, the box with the largest confidence score among the
left un-suppressed boxes is picked and added to the picked set.
Then, the weights for other left boxes are calculated based on the
overlap rate between themselves and the picked one: the larger the
overlap rate, the smaller the weight. Next, the weights (from 0 to
1) are multiplied by the scores of the left boxes. In this way, the
boxes that have a large overlap with the picked box are suppressed
through score decreasing instead of directly being deleted. After
that, the left boxes are filtered by thresholding the weighted scores.
Such an iteration terminates after the left boxes are exhausted. In
each iteration, the weight for the unpicked box bi is computed as

e−
[IoU(bi,bt)]

2

σ , where bt is the picked box in the tth iteration and
σ is a tunable parameter.

Similar to §4.1, we assign the boxes into different discrete
scale/ratio centers and define the local range in the same way
as Adjacent Scale Pooling to perform suppression. The main
difference lies in how the suppression works within each local
range. In each scan, we pick the box with the largest confidence
score and calculate the weights for other boxes based on their
overlap rates with the picked one. Then, the box confidence
scores are diminished by the weight multiplication within the
corresponding local range.

Besides discretizing local ranges for suppression, we also
propose the discretized weight calculation. We have three observa-
tions: 1) the discretized local range will naturally discrete the box
scales, ratios, and spatial shifts; 2) the discrete scale/ratio centers
and spatial shifts are also countable; 3) the weight calculation
is only confined within limited local ranges. It is also easy to
know that the IoU of two bounding boxes can be formulated by a
function of box scales, aspect ratios, and spatial shifts. Hence, the
discretized weights (or IoU score) could be enumerated. Taking
advantage of this, we build a look-up table of the weights, whose
indices are the functions of discrete centers and center shifts to
reduce the time of weight calculation.

4.4 Implementation
In this part, we introduce how to implement our PSRR-
MaxpoolNMS++. As in §3, the kernel size and stride of each
pooling scan are equal. For the pooling scan with the spatial kernel
size kx, ky over the ith box bi = [Xi, Yi, Si, Ri], we calculate
the following key as the index for encoding the box:

Key(bi) = [⌊Xi

kx
+ γ⌋, ⌊Yi

ky
+ γ⌋, ⌊Si + ω

2
⌋], (4)

where γ ∈ {0, 0.5} denotes the spatial shift parameter: γ = 0
denotes the original max-pooling operation while γ = 0.5 denotes



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Algorithm 1 PSRR-MaxpoolNMS++ Implementation
Input: The set B of un-suppressed box candidates, and the set
P of corresponding confidence scores for one object class.
Output: The suppressed boxes
for each box bi in B do

Perform coordinate discretization for bi
end for
for ω in {0, 1} do

for γ in {0, 0.5} do
keep index = Dict()
keep score = Dict()
for bi in B do

Encode bi using Key(bi) in Eq. (4)
if Key(bi) is in keep index then

if pi > keep score[Key(bi)] then
keep index[Key(bi)] = i
keep score[Key(bi)] = pi

end if
else

keep index[Key(bi)] = i
keep score[Key(bi)] = pi

end if
end for
B = B[keep index.values()]

end for
end for

the additional shifted max-pooling operation with spatial shift
of [⌊kx

2 ⌋, ⌊ky

2 ⌋]. ω ∈ {0, 1} denotes the shifts parameter in
the discrete scale centers. For example, ω = 0 denotes the
max-pooling over the scale index pairs of {(0, 1), (2, 3), ...}
and ω = 1 denotes the max-pooling over the scale index
pairs of {(1, 2), (3, 4), ...}. As mentioned in §3.3.2, kx (or
ky) is the minimum value of the kernels of the discrete scales
that the max-pooling operation covers. We can formulate it as
kx = min

{j|⌊
Sj+ω

2 ⌋=⌊Si+ω

2 ⌋}
Kx(Sj , Rj), in which Kx(Sj , Rj)

is the horizontal kernel size of the Sj-th discrete scale center and
the Rj-th discrete ratio center. In each pooling scan with a fixed
spatial shift γ and a discrete scale shift ω, each box is assigned
a key code as Eq. (4). If multiple boxes share the identical key
code, they are considered within the same local range, in which
the non-maximum ones should be deleted for suppression. We
enumerate all the pairs of (γ, ω) combinations to sequentially
perform multiple times of max-pooling scans. The pseudo-code is
formulated in Algorithm 1.

After the key for each box has been encoded as in Eq. (4), we
utilize PyTorch [36] and PyTorch-Scatter libraries to implement
Adjacent Scale Pooling, which is parallelizable across candidate
boxes. In our previous conference version, we implement PSRR-
MaxpoolNMS in §3 using the PyTorch [36] max-pooling API.
The pooling efficiency is related to the resolution of the confidence
score map. Thus, it is inefficient to suppress the low-density, sparse
boxes since it needs to scan over all the grids of the score map
even if the grid is void (all zeros). In contrast, our implementation
for PSRR-MaxpoolNMS++ here is more friendly for the sparsely
distributed boxes because the efficiency is only related to the
number of input boxes.

TABLE 3
Comparison between our methods and MaxpoolNMS [8] on the

PASCAL VOC dataset [34], at the second stage of Faster R-CNN [3]
with ResNet-50 [35]. “Box Overlap” indicates the overlap rate between
the outputs by each accelerated NMS method and GreedyNMS. As a

reference, the mAP of GreedyNMS is 78.1%.

Methods Box Overlap (%) mAP (%)
MaxpoolNMS (Single-Channel) 15.0 33.0
MaxpoolNMS (Cross-Ratio) 18.5 36.6
MaxpoolNMS (Cross-Scale) 11.6 26.5
PSRR-MaxpoolNMS 45.3 77.6
PSRR-MaxpoolNMS++ 48.4 78.3

5 EXPERIMENTS

5.1 Experimental Setup

Base detectors. We evaluate various NMS approaches at the
inference stage of various detection pipelines, including two-
stage/one-stage detectors and anchor-based/anchor-free detectors.
The used detectors are introduced as follows:
1) Faster R-CNN [3] is a two-stage anchor-based object detector.

We use ResNet-50 [35], ResNet-101 [35], P2T-Small [40],
and P2T-Large [40] as the backbone network architectures.
For Faster R-CNN training, we follow the default training
parameters of the public PyTorch [36] implementation1.

2) SSD [4] is a one-stage anchor-based object detector. We use
VGG-16 [41] and MobileNet-v2 [42] as the backbones. We
evaluate NMS using the pre-trained models provided by the
public PyTorch [36] implementation2.

3) CenterNet [37] is an anchor-free detector that uses keypoint
estimation to find center points and regresses to all other object
properties. DLA-34 [38], ResNet-DCN-18 [39], ResNet-DCN-
101 [39], and Hourglass-104 [33] are used as the backbones.
We use NMS to merge the multi-scale testing results of
CenterNet. The pre-trained models provided by the public
PyTorch [36] implementation3 are used for evaluation.

4) TOOD [37] is a one-stage detector that explicitly aligns the
object classification and localization in a learning-based man-
ner. We use ResNet-DCN-101 [39] and ResNeXt-101 [43] as
the backbones. We evaluate NMS using the pre-trained models
provided by the public PyTorch [36] implementation4.

We simply replace the GreedyNMS in these detectors with the pro-
posed PSRR-MaxpoolNMS or PSRR-MaxpoolNMS++ to show
that our NMS methods can be applied to all stages of various
types of detectors. For the IoU threshold in GreedyNMS, we use
the default parameter settings provided by the official sources.

Datasets. We carry out experiments on three datasets: PASCAL
VOC [34], MS-COCO [44], and KITTI [45]. The PASCAL VOC
and MS-COCO datasets comprise natural images, while KITTI
captures urban scenes. To measure the detection performance, we
use the mean average precision (mAP) metric. We train Faster R-
CNN [3] on the PASCAL VOC, MS-COCO, and KITTI datasets.
For the PASCAL VOC dataset, we train Faster R-CNN using
PASCAL VOC 2007 and 2012 trainval sets and evaluate on
the PASCAL VOC 2007 test set. For the MS-COCO dataset,
we train Faster R-CNN using the MS-COCO train2014 and

1. https://github.com/jwyang/faster-rcnn.pytorch
2. https://github.com/qfgaohao/pytorch-ssd
3. https://github.com/xingyizhou/CenterNet
4. https://github.com/open-mmlab/mmdetection/tree/main/configs/tood

https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/qfgaohao/pytorch-ssd
https://github.com/xingyizhou/CenterNet
https://github.com/open-mmlab/mmdetection/tree/main/configs/tood


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 4
Detection accuracy (mAP, %) of Faster R-CNN [3] and CenterNet [37] with various backbones on the PASCAL VOC dataset [34]. The

number after the symbol “/” for DLA [38] and ResNet-DCN [39] indicates the input resolution for CenterNet [37].

Methods
Faster R-CNN [3]

ResNet-50 [35] ResNet-101 [35] P2T-Small [40] P2T-Large [40]

GreedyNMS 78.1 78.4 81.3 83.7
PSRR-MaxpoolNMS 77.6 78.0 80.6 83.3
PSRR-MaxpoolNMS++ 78.3 79.0 81.2 83.8

Methods
CenterNet [37]

DLA-34/512 [38] ResNet-DCN-18/384 [39] ResNet-DCN-18/512 [39] ResNet-DCN-101/512 [39]

GreedyNMS 79.0 74.3 76.7 80.0
PSRR-MaxpoolNMS 77.8 73.4 76.2 78.8
PSRR-MaxpoolNMS++ 78.9 74.1 77.2 79.7

TABLE 5
Detection accuracy (mAP, %) of SSD [4] with various backbones

on the PASCAL VOC dataset [34].

Methods VGG-16 MobileNet-v2
GreedyNMS 77.3 68.7
PSRR-MaxpoolNMS 76.1 67.8
PSRR-MaxpoolNMS++ 76.7 68.3

val2014 without the subset of minival2014 dataset, and the
MS-COCO minival2014 is adopted for evaluation. For the
KITTI dataset, we randomly split the dataset into 5611 training
images and 1870 testing images and report the mAP at different
levels of difficulty. As for other detectors, we utilize pre-trained
models and experimental settings from public sources and evaluate
our NMS approach during the inference stage.

5.2 Comparison with MaxpoolNMS
We first compare our PSRR-MaxpoolNMS and PSRR-
MaxpoolNMS++ with MaxpoolNMS [8] at the second stage of
Faster R-CNN [3]. The evaluation results on the PASCAL VOC
dataset [34] are shown in Table 3. To estimate the quality of
mimicking GreedyNMS, given the same set of un-suppressed
boxes, we compare the selected box indices from accelerated
NMS methods and GreedyNMS, and then the ratio between the
number of commonly selected indices and the number of all
selected indices (similar to IoU) is taken as the final score, i.e.,
“Box Overlap” in Table 3. As can be observed from Table 3, all
three variants of MaxpoolNMS perform very poorly, i.e., with an
over 40% drop in mAP. Although the detection mAP increases
with the box overlap, the box overlap between MaxpoolNMS and
GreedyNMS is pretty low, i.e., a maximum overlap of 18.5%.
This indicates that MaxpoolNMS can be only applied to the first
stage of two-stage detectors as it claims [8] and is unsuitable
for the final detections. In contrast, our PSRR-MaxpoolNMS
and PSRR-MaxpoolNMS++ better mimic GreedyNMS, which is
evidenced by the large overlap ratio and comparable detection
accuracy with GreedyNMS (only 0.5% drop in mAP). It is worth
noting that similar to MaxpoolNMS [8], the only parameter to
be set for PSRR-MaxpoolNMS and PSRR-MaxpoolNMS++ is
the overlap threshold θ. Hence, our PSRR-MaxpoolNMS and
PSRR-MaxpoolNMS++ outperform MaxpoolNMS by a signif-
icant margin without adding extra parameter tuning workload.
Due to the unsatisfactory performance of MaxpoolNMS [8] as
a generic replacement for GreedyNMS, we mainly compare our
method with GreedyNMS in our experiments, as shown in §5.3.

5.3 Comparison with GreedyNMS
We continue by comparing our NMS approaches with the default
NMS method in current object detectors, i.e., GreedyNMS, on
various datasets with various detectors. The experimental results
on the PASCAL VOC dataset [34] are summarized in Table 4
and Table 5, where we benchmark two-stage (i.e., Faster R-CNN
[3]), one-stage (i.e., SSD [4]), and anchor-free (i.e., CenterNet
[37]) object detectors with various backbone networks. As can
be seen from Table 4 and Table 5, our PSRR-MaxpoolNMS++
consistently outperforms our preliminary PSRR-MaxpoolNMS in
all cases, demonstrating the effectiveness of our new techniques.
For anchor-based detectors, our PSRR-MaxpoolNMS++ performs
better than GreedyNMS when equipped in Faster R-CNN [3]
but performs slightly worse than GreedyNMS for SSD [4]. For
the anchor-free CenterNet [37], our PSRR-MaxpoolNMS++ at-
tains comparable performance with GreedyNMS, that is, PSRR-
MaxpoolNMS++ achieves the same or better accuracy for some
backbones and slightly worse accuracy for other backbones. Note
that our PSRR-MaxpoolNMS++ and PSRR-MaxpoolNMS are
parallelizable, while GreedyNMS is not, as shown in Table 1.

Table 6 displays the results on the MS-COCO dataset [44],
where we benchmark Faster R-CNN [3], CenterNet [37], and
TOOD [46] with various backbones. The evaluation is based on
the standard metrics from the MS-COCO dataset [44]. For Faster
R-CNN [3] and CenterNet [37], our PSRR-MaxpoolNMS++ con-
sistently outperforms GreedyNMS as well as our preliminary
PSRR-MaxpoolNMS in all cases. For TOOD [46], our PSRR-
MaxpoolNMS++ performs slightly worse than GreedyNMS. Note
that our goal in this paper is to develop a fast and parallelizable
NMS approach to replace GreedyNMS, not to improve accuracy.

To evaluate the generality of our NMS approaches, we also
carry out experiments on the KITTI dataset [45] with urban scenes,
and the evaluation results are shown in Table 7. On the KITTI
dataset [45], we use Faster R-CNN [3] with various ResNet [35]
backbones as the detectors. Our PSRR-MaxpoolNMS++ reaches
comparable detection accuracy with GreedyNMS, regardless of
the backbone networks used. PSRR-MaxpoolNMS++ outperforms
PSRR-MaxpoolNMS in most cases, indicating that it is more
suitable to use PSRR-MaxpoolNMS++ in practical applications.

Our experiments demonstrate that our PSRR-MaxpoolNMS++
achieves comparable or even better accuracy than GreedyNMS
on various kinds of datasets using various kinds of object de-
tectors. This implies that PSRR-MaxpoolNMS++ is a good re-
placement for GreedyNMS for object detection. Since PSRR-
MaxpoolNMS++ is parallelizable, it would accelerate object de-
tectors by replacing the non-parallelizable GreedyNMS, benefit-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 6
Detection accuracy of Faster R-CNN [3], CenterNet [37], and TOOD [46] with various backbones on the MS-COCO dataset [44].

MS-COCO minival2014 with Faster R-CNN [3]

Methods AP @ 0.5:0.95 AP @ 0.5 AP @ 0.75 AP Small AP Medium AP Large

GreedyNMS (ResNet-50 [35]) 33.3 52.8 35.9 14.0 37.8 50.2
PSRR-MaxpoolNMS (ResNet-50 [35]) 33.0 51.8 35.7 13.6 37.7 49.9
PSRR-MaxpoolNMS++ (ResNet-50 [35]) 33.6 52.9 36.3 14.1 38.2 50.6

GreedyNMS (ResNet-101 [35]) 35.1 54.0 37.6 14.7 39.2 53.2
PSRR-MaxpoolNMS (ResNet-101 [35]) 34.7 53.1 37.3 14.4 39.2 52.6
PSRR-MaxpoolNMS++ (ResNet-101 [35]) 35.3 54.2 37.8 14.9 39.6 53.5

MS-COCO test2017 with CenterNet [37]

Methods AP @ 0.5:0.95 AP @ 0.5 AP @ 0.75 AP Small AP Medium AP Large

GreedyNMS (ResNet-DCN-101 [39]) 38.3 57.7 40.7 20.1 41.8 54.9
PSRR-MaxpoolNMS (ResNet-DCN-101 [39]) 37.8 56.0 40.5 18.5 41.7 55.3
PSRR-MaxpoolNMS++ (ResNet-DCN-101 [39]) 38.8 58.2 41.3 20.3 42.5 55.7

GreedyNMS (Hourglass-104 [32], [47]) 43.9 62.5 47.9 27.2 46.4 59.1
PSRR-MaxpoolNMS (Hourglass-104 [32], [47]) 42.9 60.0 47.0 24.7 46.4 59.4
PSRR-MaxpoolNMS++ (Hourglass-104 [32], [47]) 44.4 62.7 48.4 27.3 47.3 59.6

MS-COCO test2017 with TOOD [46]

GreedyNMS (ResNet-DCN-101 [39]) 49.3 66.8 53.6 32.2 53.4 64.0
PSRR-MaxpoolNMS (ResNet-DCN-101 [39]) 46.1 62.2 50.2 27.4 50.9 62.4
PSRR-MaxpoolNMS++ (ResNet-DCN-101 [39]) 49.2 66.3 53.7 31.9 53.3 64.1

GreedyNMS (ResNeXt-101-64×4d [43]) 47.6 65.8 51.6 30.6 51.4 59.7
PSRR-MaxpoolNMS (ResNeXt-101-64×4d [43]) 44.5 61.2 48.3 25.8 49.1 58.3
PSRR-MaxpoolNMS++ (ResNeXt-101-64×4d [43]) 47.4 65.4 51.6 30.4 51.4 59.7

TABLE 7
Detection accuracy (mAP, %) of Faster R-CNN [3] with ResNets [35] as the backbone on the KITTI dataset [45].

Methods mAP (easy to hard)
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

GreedyNMS (ResNet-50) 92.3 87.3 80.6 96.7 94.5 84.9 87.7 79.4 72.4 92.3 88.1 84.4
PSRR-MaxpoolNMS (ResNet-50) 91.3 86.1 79.4 95.1 94.2 83.5 87.6 77.7 72.1 91.1 86.4 82.7
PSRR-MaxpoolNMS++ (ResNet-50) 91.7 87.3 81.0 95.1 95.3 86.6 87.6 78.3 71.9 92.4 88.4 84.6
GreedyNMS (ResNet-101) 91.6 86.2 79.1 96.2 93.4 83.9 87.2 78.9 71.6 91.2 86.2 81.6
PSRR-MaxpoolNMS (ResNet-101) 91.1 85.6 78.7 93.5 93.1 83.7 87.0 77.1 69.7 92.7 86.7 82.7
PSRR-MaxpoolNMS++ (ResNet-101) 91.7 87.1 79.3 94.8 96.6 85.9 88.7 77.9 69.8 91.5 86.9 82.2

Fig. 10. Execution time of PSRR-MaxpoolNMS, PSRR-MaxpoolNMS++,
and GreedyNMS as a function of the number of bounding boxes.

ing the real-world applications of object detection. As an im-
proved version of PSRR-MaxpoolNMS, PSRR-MaxpoolNMS++

achieves its goal of improving the detection accuracy of PSRR-
MaxpoolNMS while still being parallelizable.

Discussion. It is somewhat surprising to note that PSRR-
MaxpoolNMS++ sometimes attains higher accuracy than Gree-
dyNMS. To explain this, we note that Zheng et al. [48] found
that both the overlapping extent (e.g., IoU) and distance be-
tween two boxes are helpful for bounding box suppression.
While GreedyNMS focuses solely on the former by eliminat-
ing largely overlapped boxes, PSRR-MaxpoolNMS++ considers
both factors. Specifically, the Density-based Discretization in
PSRR-MaxpoolNMS++ adopts the target density parameter θ
when determining discrete scale centers, and Adjacent Scale
Pooling employs the parameter θ when determining the kernel
sizes and strides of max-pooling using Eq. (3). Besides, PSRR-
MaxpoolNMS++ also considers the distance between two boxes
using max-pooling with different kernel sizes and strides for
different adjacent scale pairs, as illustrated in Eq. (3).

Limitations. Meanwhile, it is worth noting that our methods
might be less effective for less powerful detectors, such as SSD
[4], as shown in Table 5. A reasonable explanation is that less
powerful detectors may not accurately regress candidate boxes
to their corresponding ground-truth locations. Consequently, our



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

NMS approaches may face difficulty in identifying neighboring
boxes that enclose the same instance. In contrast, GreedyNMS can
handle this scenario more effectively by calculating the overlap
extent to identify neighboring boxes. The impact of this limitation
could be mitigated through the ongoing development of more
powerful object detectors.

5.4 Efficiency Analyses
We carry out both theoretical and experimental analyses on the
computing efficiency of our methods.

5.4.1 Theoretical Analyses of Time Complexity
We first provide the theoretical analysis of the time complexities
for GreedyNMS and our methods. Given the number of input
boxes N , the time complexities of PSRR-MaxpoolNMS and
PSRR-MaxpoolNMS++ are both O(N), which is much smaller
than O(N logN) + O(N2) of GreedyNMS. Moreover, our ap-
proaches can be easily parallelized, which in turn would further
reduce the execution time.

5.4.2 Runtime Comparison
We proceed with measuring the execution time of GreedyNMS
and our methods on an AMD EPYC 7313P CPU and RTX3090
GPU, with different numbers of bounding boxes being processed.
We conduct experiments on the MS-COCO minival2014
dataset [44]. We follow the pipeline to process all boxes in
all categories, similar to batched NMS, to implement our NMS
methods. Since GreedyNMS is not parallelizable, it is non-
straightforward to implement it on GPU. Thus, we only provide
GreedyNMS’s execution time on CPU. For a fair comparison, we
implement PSRR-MaxpoolNMS using the same pooling scheme
as PSRR-MaxpoolNMS++ with corresponding key encoding. The
results are summarized in Fig. 10. With the increasing num-
ber of input bounding boxes, both PSRR-MaxpoolNMS and
PSRR-MaxpoolNMS++ are more and more efficient than Gree-
dyNMS. PSRR-MaxpoolNMS++ achieves better efficiency than
PSRR-MaxpoolNMS. It is interesting to observe that the plot
of GreedyNMS appears more efficient than its complexity, i.e.,
O(N logN) + O(N2). According to the computational com-
plexity theory, the complexity is the upper bound in the worst-
case scenario. Thus, it is common for theoretical complexity not
to align perfectly with actual runtime. Besides, the plots of our
methods’ GPU implementations look like constant functions. This
is because our methods are highly efficient, such that processing
up to 1000 boxes cannot make full use of a modern GPU. Thus, the
runtime increase is minor when the number of boxes is increased
within this range.

5.4.3 Parallelism Analysis
The parallelism inherent in our PSRR-MaxpoolNMS and PSRR-
MaxpoolNMS++ can leverage the parallelism-friendly GPU plat-
form to further enhance efficiency. As depicted in Fig. 10, GPU
implementations generally outperform CPU counterparts in terms
of efficiency. To better showcase the advantages of parallelism,
we conducted experiments using the batched NMS pipeline on
PSRR-MaxpoolNMS and PSRR-MaxpoolNMS++ to process large
quantities of input bounding boxes, thereby highlighting the algo-
rithms’ parallel nature. Fig. 11 illustrates the comparison of execu-
tion time on CPU and GPU platforms. It is evident that, owing to
the algorithm’s parallelism and the powerful parallel capabilities

Fig. 11. Execution time of CPU and GPU implementations of PSRR-
MaxpoolNMS and PSRR-MaxpoolNMS++ when processing large num-
bers of bounding boxes.

Fig. 12. Evaluation results (mAP, %) on the PASCAL VOC dataset [34]
with various settings of the target density parameter θ using the Faster
R-CNN detector [3].

of GPU, execution time is significantly reduced compared to the
CPU implementation. The speed advantage of our methods on
GPU compared to CPU becomes more pronounced as the number
of input boxes increases, thus demonstrating the benefits of our
methods’ parallelism.

5.5 Ablation Study
In this section, we mainly discuss our new designs in the pro-
posed PSRR-MaxpoolNMS++. For more discussions about PSRR-
MaxpoolNMS, please refer to our preliminary paper [1].

5.5.1 Density-based Discretization
In this section, we validate the superiority of our new Density-
based Discretization in PSRR-MaxpoolNMS++ over the anchor-
based discretization in PSRR-MaxpoolNMS. We perform experi-
ments on the PASCAL VOC [34]) and MS-COCO [44] datasets.
The experimental results are reported in Table 8. We observe
that, compared with anchor-based discretization, our new Density-
based Discretization can be adapted to different target suppression
densities more flexibly and achieves better detection accuracy. We
also conduct additional experiments to investigate the effect of the
range of discrete scale centers. In Table 8, the “Anchor-based∗”
method refers to the anchor-based discretization with an enlarged
range of discrete scale centers {322, 642, 1282, 2562, 5122},



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

TABLE 8
Comparison of different discretization methods in terms of mAP

on PASCAL VOC [34] and MS-COCO [44] datasets. “Anchor-based∗”
refers to the Anchor-based discretization with the same minimum

discrete scale center as our density-based discretization.

Datasets Methods Anchor-based Anchor-based∗ Density-based

PASCAL VOC [34]
Faster R-CNN [3]
(ResNet-50 [35]) 78.0 77.9 78.3

Faster R-CNN [3]
(ResNet-101 [35]) 78.8 78.8 79.0

MS-COCO [44]
TOOD [46]

(ResNeXt-101 [43]) 46.7 47.2 47.4

TOOD [46]
(ResNet-DCN-101 [39]) 48.5 49.0 49.2

TABLE 9
Comparison of different pooling schemes in terms of detection
accuracy and execution time on the PASCAL VOC dataset [34].
The detector is Faster R-CNN [3] with the ResNet-50 [35] backbone.

SC: Single-Channel MaxpoolNMS; CR: Cross-Ratio MaxpoolNMS; CS:
Cross-Scale MaxpoolNMS; All: Cross-all-Channel MaxpoolNMS; ASP:

Adjacent Scale Pooling; ARP: Adjacent Ratio Pooling.

Pooling Methods mAP (ms/image)
SC + CR + CS + All 77.3 (32.9)

ASP 78.3 (15.7)
ARP 58.3 (18.1)

ASP + ARP 77.5 (29.9)

which utilizes the same minimum scale center value and a similar
maximum scale center value compared to our Density-based Dis-
cretization. Table 8 shows that the enlarged range of anchor-based
discrete scale centers may not improve detection performance,
whereas the enlarged range of density-based discrete scale centers
usually achieves better results.

5.5.2 Adjacent Scale Pooling
In this part, we validate the effect of our Adjacent Scale Pooling
with regard to both detection accuracy and efficiency. We first
experiment with different pooling approaches proposed in PSRR-
MaxpoolNMS and PSRR-MaxpoolNMS++. For a fair compari-
son, we implement all pooling approaches as in §4.4 with the
same parameter settings. The evaluation results are reported in
Table 9. Compared with the pyramid pooling (i.e., Single-Channel
+ Cross-Scale + Cross-Ratio + Cross-all-Channels MaxpoolNMS)
in PSRR-MaxpoolNMS, the Adjacent Scale Pooling in PSRR-
MaxpoolNMS++ archives better detection accuracy with less
runtime because PSRR-MaxpoolNMS++ has fewer rounds of
scanning than the pyramid pooling in PSRR-MaxpoolNMS.

Besides, we can observe in Fig. 9 that although the largely-
overlapped box pairs exist across the discrete ratios, the chance
for largely-overlapped box pairs with dramatic ratio difference
(e.g., 0.5 vs. 2) is small. Thus, it is intuitive to further investigate
the pooling across the adjacent ratios. Similar to Adjacent Scale
Pooling, adjacent ratio pooling refers to pooling across adjacent
discrete ratio centers regardless of the scale centers. As shown in
Table 9, the adjacent ratio pooling underperforms our Adjacent
Scale Pooling significantly. The underlying reason may be that
the large overlapping could not happen between a pair of boxes
with a dramatic scale difference (see Fig. 8). We also carry
out experiments by simultaneously performing the adjacent scale
and adjacent ratio pooling schemes. That is to say, the pooling
is operated across the boxes assigned to both the neighboring
discrete scale and ratio centers. As in Table 9, under the same
settings, the simultaneous adjacent scale/ratio pooling does not

TABLE 10
Results (mAP, %) of extending our methods to SoftNMS on the
PASCAL VOC dataset [34] with the Faster R-CNN detector [3].

ResNet-50 [35] ResNet-101 [35]
SoftNMS [9] 78.7 79.2
Ours-Soft-Anchor 78.6 79.3
Ours-Soft-Density 78.7 79.4

bring an improvement in detection accuracy but brings an increase
in runtime. Therefore, we choose to perform the Adjacent Scale
Pooling and disregard the factor of ratios.

5.5.3 Target Density Parameter
The target density parameter θ is the parameter to decide
the overlapping extent of the suppressed boxes. In PSRR-
MaxpoolNMS++, it decides the discrete center resolution and spa-
tial pooling kernel size, which directly influences the suppression
precision and recall. We perform experiments with various θ val-
ues using the Faster R-CNN detector [3] with various backbones.
The results on the PASCAL VOC dataset [34] in terms of mAP
are depicted in Fig. 12. As can be seen, the optimal θ value is
in the range of [0.35, 0.45]. We also observe that more powerful
detectors (e.g., with ResNet-101 or ResNet-152 backbones [35])
will result in less sensitivity on the target density parameter θ.

5.6 Extension to SoftNMS
We continue by validating that our approach can be extended to
SoftNMS [9]. We conduct experiments using the Faster R-CNN
[3] detector with various backbones. The local range for box
suppression is defined the same as the Adjacent Scale Pooling
with anchor-based (i.e., “Ours-Soft-Anchor”) or density-based
(i.e., “Ours-Soft-Density”) discretization approach. The detection
accuracy is reported in Table 10. We observe that our approach
achieves comparable detection accuracy (mAP) with the SoftNMS
baseline using various backbones, suggesting the good generality
of our approach. Besides, the Density-based Discretization ap-
proach also helps to improve detection accuracy since it defines a
more reasonable local range of suppression.

6 CONCLUSION

This paper targets accelerating non-maximum suppression (NMS)
for deep-learning-based object detection. Existing NMS ap-
proaches are either non-parallelizable (e.g., GreedyNMS) or dif-
ficult to be applied to all stages of object detectors (i.e., Max-
poolNMS [8]). To address this challenge, we noted that the
parallelizable NMS approaches can be divided into two stages:
box coordinate discretization and local score argmax calculation
(§1). We first introduced our preliminary NMS approach, PSRR-
MaxpoolNMS, which applies anchor-based discretization, i.e.,
Relationship Recovery, and Pyramid Shifted MaxpoolNMS to
improve the above two stages, respectively. PSRR-MaxpoolNMS
extends the parallelizable NMS approach to all stages of all detec-
tors (§3). Then, we further proposed PSRR-MaxpoolNMS++ to
improve the accuracy and computational efficiency, which consists
of Density-based Discretization and Adjacent Scale Pooling for
handling the above two stages, respectively (§4). We conducted
comprehensive experiments on various datasets using various
object detectors (§5). The results show that our approaches outper-
form parallelizable MaxpoolNMS [8] significantly. Notably, our



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

PSRR-MaxpoolNMS++ achieves comparable detection accuracy
with much better efficiency than non-parallelizable GreedyNMS.
In the future, we plan to explore the implementation of our NMS
approaches on more platforms (e.g., ASIC) for facilitating the real-
world deployment of object detectors.

REFERENCES

[1] T. Zhang, J. Lin, P. Hu, B. Zhao, and M. M. S. Aly, “PSRR-
MaxpoolNMS: Pyramid shifted MaxpoolNMS with relationship recov-
ery,” in IEEE Conference on Computer Vision and Pattern Recognition,
2021, pp. 15 840–15 848. 1, 2, 12

[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Com-
puter Vision, 2015, pp. 1440–1448. 1, 2

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 91–99. 1, 2, 3, 4, 8,
9, 10, 11, 12, 13

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European Conference on
Computer Vision, 2016, pp. 21–37. 1, 2, 4, 9, 10, 11

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 779–788. 1, 2

[6] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-
based fully convolutional networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 379–387. 1

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-Datacenter per-
formance analysis of a tensor processing unit,” in Annual International
Symposium on Computer Architecture, 2017, pp. 1–12. 1

[8] L. Cai, B. Zhao, Z. Wang, J. Lin, C. S. Foo, M. S. Aly, and V. Chan-
drasekhar, “MaxpoolNMS: Getting rid of NMS bottlenecks in two-stage
object detectors,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 9356–9364. 1, 2, 3, 4, 5, 6, 9, 10, 13

[9] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-NMS –
Improving object detection with one line of code,” in IEEE International
Conference on Computer Vision, 2017, pp. 5561–5569. 2, 3, 6, 8, 13

[10] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in IEEE
International Conference on Computer Vision, 2017, pp. 2961–2969. 2

[11] Z.-M. Chen, X. Jin, B. Zhao, X.-S. Wei, and Y. Guo, “Hierarchical
context embedding for region-based object detection,” in European
Conference on Computer Vision, 2020, pp. 633–648. 2

[12] C.-D. Xu, X.-R. Zhao, X. Jin, and X.-S. Wei, “Exploring categorical
regularization for domain adaptive object detection,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2020, pp. 11 724–11 733.
2

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–
587. 2

[14] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Se-
lective search for object recognition,” International Journal of Computer
Vision, vol. 104, no. 2, pp. 154–171, 2013. 2

[15] Y. Liu, S. Li, and M.-M. Cheng, “RefinedBox: Refining for fewer and
high-quality object proposals,” Neurocomputing, vol. 406, pp. 106–116,
2020. 2

[16] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2005, pp. 886–893. 2

[17] S. Liu, D. Huang, and Y. Wang, “Adaptive NMS: Refining pedestrian
detection in a crowd,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 6459–6468. 3

[18] J. Hosang, R. Benenson, and B. Schiele, “A convnet for non-maximum
suppression,” in German Conference on Pattern Recognition, 2016, pp.
192–204. 3

[19] N. Gählert, N. Hanselmann, U. Franke, and J. Denzler, “Visibility Guided
NMS: Efficient boosting of amodal object detection in crowded traffic
scenes,” arXiv preprint arXiv:2006.08547, 2020. 3

[20] N. O. Salscheider, “FeatureNMS: Non-maximum suppression by learning
feature embeddings,” in International Conference on Pattern Recogni-
tion, 2021, pp. 7848–7854. 3

[21] J. Wang, X. Yin, L. Wang, and L. Zhang, “Hashing-based non-
maximum suppression for crowded object detection,” arXiv preprint
arXiv:2005.11426, 2020. 3

[22] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Eu-
ropean Conference on Computer Vision, 2020, pp. 213–229. 3

[23] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: Deformable transformers for end-to-end object detection,” in
International Conference on Learning Representations, 2021. 3

[24] F. Li, H. Zhang, S. Liu, J. Guo, L. M. Ni, and L. Zhang, “DN-DETR:
Accelerate DETR training by introducing query denoising,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2022, pp.
13 619–13 627. 3

[25] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H. Shum,
“DINO: DETR with improved denoising anchor boxes for end-to-end ob-
ject detection,” in International Conference on Learning Representations,
2023. 3

[26] Q. Chen, X. Chen, J. Wang, S. Zhang, K. Yao, H. Feng, J. Han, E. Ding,
G. Zeng, and J. Wang, “Group DETR: Fast DETR training with group-
wise one-to-many assignment,” in IEEE International Conference on
Computer Vision, 2023, pp. 6633–6642. 3

[27] Z. Zong, G. Song, and Y. Liu, “DETRs with collaborative hybrid
assignments training,” in IEEE International Conference on Computer
Vision, 2023, pp. 6748–6758. 3

[28] Q. Hong, F. Liu, D. Li, J. Liu, L. Tian, and Y. Shan, “Dynamic sparse R-
CNN,” in IEEE Conference on Computer Vision and Pattern Recognition,
2022, pp. 4723–4732. 3

[29] J. Wang, L. Song, Z. Li, H. Sun, J. Sun, and N. Zheng, “End-to-end
object detection with fully convolutional network,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2021, pp. 15 849–15 858.
3

[30] C. Lyu, W. Zhang, H. Huang, Y. Zhou, Y. Wang, Y. Liu, S. Zhang, and
K. Chen, “RTMDet: An empirical study of designing real-time object
detectors,” arXiv preprint arXiv:2212.07784, 2022. 3

[31] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2023,
pp. 7464–7475. 3

[32] H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,”
in European Conference on Computer Vision, 2018, pp. 734–750. 5, 11

[33] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Keypoint triplets for object detection,” in IEEE International Conference
on Computer Vision, 2019, pp. 6569–6578. 5, 9

[34] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The PASCAL visual object classes (VOC) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010. 8, 9,
10, 12, 13

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778. 8, 9, 10, 11, 13

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” in Annual
Conference on Neural Information Processing Systems, 2019, pp. 8026–
8037. 9

[37] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv preprint
arXiv:1904.07850, 2019. 9, 10, 11

[38] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2403–2412. 9, 10

[39] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in IEEE International Conference on Computer
Vision, 2017, pp. 764–773. 9, 10, 11, 13

[40] Y.-H. Wu, Y. Liu, X. Zhan, and M.-M. Cheng, “P2T: Pyramid pooling
transformer for scene understanding,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 11, pp. 12 760–12 771,
2022. 9, 10

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015. 9

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520. 9

[43] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 1492–1500. 9, 11,
13

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

context,” in European Conference on Computer Vision, 2014, pp. 740–
755. 9, 10, 11, 12, 13

[45] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354–3361. 9, 10,
11

[46] C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, “TOOD: Task-
aligned one-stage object detection,” in IEEE International Conference on
Computer Vision, 2021, pp. 3490–3499. 10, 11, 13

[47] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human
pose estimation,” in European Conference on Computer Vision, 2016, pp.
483–499. 11

[48] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-IoU
loss: Faster and better learning for bounding box regression,” in AAAI
Conference on Artificial Intelligence, 2020, pp. 12 993–13 000. 11

Tianyi Zhang received the B.E. degree from
Beihang University, China, in 2012, the Master’s
degree from University of Pennsylvania, USA,
in 2014, and the Ph.D. degree degree from
Nanyang Technological University, Singapore, in
2020. She is currently an Assistant Professor
at School of Cyber Science and Technology,
Beihang University, China. Her research inter-
ests include computer vision and deep learning,
with emphasis on image/video recognition and
weakly supervised learning.

Chunyun Chen received the B.E. degree from
University of Electronic Science and Technology
of China, Chengdu, Sichuan, China, in 2020,
and the Ph.D. degree in the College of Com-
puting and Data Science, Nanyang Technologi-
cal University, Singapore, in 2024. His research
interests include intelligent learning machine
systems, deep learning processor architecture,
transformer accelerator architecture, network-
on-chip, and distributed systems.

Yun Liu received his B.E. and Ph.D. degrees
from Nankai University in 2016 and 2020, re-
spectively. Then, he worked with Prof. Luc Van
Gool as a postdoctoral scholar at Computer Vi-
sion Lab, ETH Zurich, Switzerland. After that, he
worked as a senior scientist at the Institute for
Infocomm Research (I2R), A*STAR, Singapore.
His research interests include computer vision
and machine learning.

Xue Geng received her B.E. degree in computer
Science from Northeastern University, China, in
2012, and Ph.D. degree in computer science
from NUS, Singapore, in 2017. Currently, she is
a senior scientist at the Institute for Infocomm
Research (I2R), A*STAR, Singapore. Her re-
search interests include model compression and
efficient machine learning.

Mohamed M. Sabry Aly is an Associate Profes-
sor at Nanyang Technological University, Singa-
pore, and the founder of EMASS. He received
his Ph.D. degree in electrical and computer en-
gineering from École Polytechnique Fédérale de
Lausanne (EPFL), in 2013. He was a postdoc-
toral research fellow at Stanford University from
2014 till 2017. His current research interests
include system-level design and optimization of
computing systems enabled by emerging tech-
nologies, with particular emphasis on computing

systems for artificial intelligence. He is an active close collaborator
with top industrial and academic partners such as, Stanford University
and TSMC. He is a Senior IEEE member, and he was the recipient
of the Swiss National Science Foundation Early Post-Doctoral Mobility
Fellowship in 2013.

Jie Lin was a senior scientist at the Institute for
Infocomm Research (I2R), A*STAR, Singapore.
His research interests include deep learning, AI
accelerators, privacy-preserving machine learn-
ing, data compression, and computer vision. In
particular, he worked on resource-efficient AI to
build lightweight, fast, and energy-efficient deep
learning algorithms for next-generation AI hard-
ware and privacy-preserving applications. He
published over 80 peer-reviewed papers on top
conferences and journals.


	Introduction
	Related Works
	One-stage and Two-stage Object Detectors
	Non-maximum Suppression
	End-to-end Object Detection

	PSRR-MaxpoolNMS
	Revisiting MaxpoolNMS
	Limitations of MaxpoolNMS
	Our PSRR-MaxpoolNMS
	Discretization: Relationship Recovery
	Local Score Argmax: Pyramid Shifted MaxpoolNMS


	PSRR-MaxpoolNMS++
	From PSRR-MaxpoolNMS to PSRR-MaxpoolNMS++
	Discretization: Density-based Discretization
	Local Score Argmax: Adjacent Scale Pooling

	Discussion: Scale vs. Ratio
	Extension to SoftNMS
	Implementation

	Experiments
	Experimental Setup
	Comparison with MaxpoolNMS
	Comparison with GreedyNMS
	Efficiency Analyses
	Theoretical Analyses of Time Complexity
	Runtime Comparison
	Parallelism Analysis

	Ablation Study
	Density-based Discretization
	Adjacent Scale Pooling
	Target Density Parameter

	Extension to SoftNMS

	Conclusion
	References
	Biographies
	Tianyi Zhang
	Chunyun Chen
	Yun Liu
	Xue Geng
	Mohamed M. Sabry Aly
	Jie Lin


