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Learning Local and Global Temporal Contexts
for Video Semantic Segmentation

Guolei Sun, Yun Liu, Henghui Ding, Min Wu, and Luc Van Gool

Abstract—Contextual information plays a core role for video semantic segmentation (VSS). This paper summarizes contexts for VSS
in two-fold: local temporal contexts (LTC) which define the contexts from neighboring frames, and global temporal contexts (GTC)
which represent the contexts from the whole video. As for LTC, it includes static and motional contexts, corresponding to static and
moving content in neighboring frames, respectively. Previously, both static and motional contexts have been studied. However, there is
no research about simultaneously learning static and motional contexts (highly complementary). Hence, we propose a Coarse-to-Fine
Feature Mining (CFFM) technique to learn a unified presentation of LTC. CFFM contains two parts: Coarse-to-Fine Feature Assembling
(CFFA) and Cross-frame Feature Mining (CFM). CFFA abstracts static and motional contexts, and CFM mines useful information
from nearby frames to enhance target features. To further exploit more temporal contexts, we propose CFFM++ by additionally
learning GTC from the whole video. Specifically, we uniformly sample certain frames from the video and extract global contextual
prototypes by k-means. The information within those prototypes is mined by CFM to refine target features. Experimental results on
popular benchmarks demonstrate that CFFM and CFFM++ perform favorably against state-of-the-art methods. The code is available at
https://github.com/GuoleiSun/VSS-CFFM.

Index Terms—Video semantic segmentation, local temporal contexts, static contexts, motional contexts, global temporal contexts,
feature mining, vision transformer
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1 INTRODUCTION

S EMANTIC segmentation aims at assigning a semantic label to
each pixel in a natural image, which is a fundamental and hot

topic in the computer vision community. It has a wide range of
applications in both academic and industrial fields. Thanks to the
powerful representation capability of deep neural networks [2]–[5]
and large-scale image datasets [6]–[10], tremendous achievements
have been seen for image semantic segmentation. However, video
semantic segmentation (VSS) has not been witnessed such
tremendous progress [11]–[14] due to the lack of large-scale
datasets. For example, Cityscapes [7] and NYUDv2 [15] datasets
only annotate one or several nonadjacent frames in a video clip.
CamVid [16] only has a small scale and a low frame rate. The real
world is actually dynamic rather than static, so research on VSS
is necessary. Fortunately, the recent establishment of the large-
scale VSS dataset, VSPW [17], solves the problem of video data
scarcity. This inspires us to denote our efforts to VSS.

As widely accepted, the contextual information plays a central
role in image semantic segmentation [18]–[33]. When considering
videos, the contextual information can be divided into two cases
based on how much temporal information is used: local temporal
contexts and global temporal contexts. As shown in Fig. 1a, local
temporal contexts refer to the contexts from neighboring/nearby
frames, while global temporal contexts represent the contexts from
a much larger view, i.e., the whole video.
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Fig. 1. Illustration of various video contexts. (a) Illustration of local
temporal contexts and global temporal contexts. (b) Illustration of static
contexts (in blue) and motional contexts (in red) across neighbouring
video frames. The human and horse are moving objects, while the
grassland and sky are static backgrounds. Note that the static stuff is
helpful for the recognition of moving objects, i.e., a human is riding a
horse on the grassland.

We first discuss local temporal contexts which are widely
exploited in VSS [11]–[14], [34]–[42]. The local temporal con-
texts can be further divided into static contexts and motional
contexts among neighboring video frames, as shown in Fig. 1b.
The former refers to the contexts within the same video frame or
the contexts of unchanged content across the neighboring frames.
Image semantic segmentation has exploited such contexts (for
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images) a lot, mainly accounting for multi-scale [24], [27], [28],
[30] and global/long-range information [18], [29], [31], [32]. Such
information is essential not only for understanding the static scene
but also for perceiving the relatively holistic environment existing
in the neighboring frames. The latter is responsible for better
parsing moving objects/stuff and capturing more effective scene
representations with the help of motions. Most of the VSS methods
mainly studied motional contexts among nearby frames, which
usually relies on optical flows [43] to model motional contexts
from frames to adjacent frames, ignoring the static contexts.
Although each single aspect, i.e., static or motional contexts,
has been well studied, how to learn static and motional contexts
simultaneously among nearby frames deserves more attention,
which is important for VSS.

Furthermore, static contexts and motional contexts are highly
correlated, not isolated, because both contexts are complementary
to each other to represent the information existing in several
nearby frames. Therefore, the ideal solution for learning local
temporal contexts is to jointly learn static and motional contexts,
i.e., generating a unified representation of static and motional
contexts. A naı̈ve solution is to apply recent popular self-attention
[44]–[46] by taking feature vectors at all pixels in neighboring
frames as tokens. This can directly model global relationships of
all tokens, of course including both static and motional contexts.
However, this naı̈ve solution has some obvious drawbacks. For
example, it is super inefficient due to a large number of to-
kens/pixels in the considered nearby frames, making this naı̈ve
solution unrealistic. It also contains too much redundant compu-
tation because most content in nearby frames usually does not
change much and it is unnecessary to compute attention for the
repeated content. Moreover, the too-long length of tokens would
affect the performance of self-attention, as shown in [47]–[51]
where the reduction of the token length through downsampling
leads to better performance. More discussion about why traditional
self-attention is inappropriate for video context learning can be
found in §3.1.

In this paper, we propose a Coarse-to-Fine Feature Mining
(CFFM) technique to learn local temporal contexts, which con-
sists of two parts: Coarse-to-Fine Feature Assembling (CFFA)
and Cross-frame Feature Mining (CFM). Specifically, we first
apply an efficient deep network [52] to extract features from each
frame. Then, we assemble the extracted features from neighboring
frames in a coarse-to-fine manner. Here, we use a larger receptive
field and a more coarse pooling if the frame is more distant
from the target frame. This feature assembling operation has two
meanings. On one hand, it organizes the features in a multi-scale
way, and the farthest frame would have the largest receptive field
and the most coarse pooling. Since the content in a few sequential
frames usually does not change suddenly and most content may
only have a little temporal inconsistency, this operation is expected
to prepare data for learning static contexts. On the other hand, this
feature assembling operation enables a large perception region
for remote frames because the moving objects may appear in a
large region for remote frames. This makes it suitable for learning
motional contexts. Then, with the assembled features, we use the
CFM technique to iteratively mine useful contextual information
from neighbouring frames for the target frame. This mining
technique is a specially designed non-self attention mechanism
that has two different inputs, unlike commonly used self-attention
that only has one input [44], [45]. The output features enhanced
by CFFM can be directly used for final prediction. We describe

the technical motivations for CFFM in detail in §3.1.
For global temporal contexts, few VSS methods [17], [53] have

exploited the contexts from the whole video. The modeling of
global temporal contexts is usually achieved by a memory module
in the form of a memory bank [17] or a tiny network [53] which
is updated during inference. Although promising results have
been achieved, there are two obvious drawbacks: 1) the global
temporal contexts are implicitly modeled and it is unclear what
information is kept in the memory; 2) the contextual information
in the memory keeps increasing when processing the video frame-
by-frame and the global temporal interaction is only possible for
the last few frames of the video. To this end, based on the proposed
CFFM, we further propose to explicitly learn global temporal
contexts for VSS. After training our CFFM, the features (for
each frame of the video) output from the trained network contains
high-level semantic information and can be used to extract global
temporal contexts. Since a video contains a large number of frames
(tens or hundreds), we first sample some frames by a certain
step from the whole video. This largely reduces the number of
frames for the following processing. Features are extracted for
these selected frames, which are decomposed as tokens. Here, the
number of tokens is still large and impossible to be used. We
largely reduce the token quantity by clustering all the tokens into
different sub-groups. The centers of sub-groups are informative
and representative prototypes, which abstract the contexts for the
whole video. With the generated prototypes, we use the CFM
technique again to iteratively mine useful information from the
whole video to the target frame. The prediction of this global
temporal context mining branch is combined with the prediction
from CFFM. We name this model using both local and global
temporal contexts as CFFM++, which is an extension of the CFFM
by incorporating global temporal contexts.

To summarize, this paper studies local and global temporal
contexts for VSS, with the following contributions:

• To learn the local temporal contexts of videos, we propose
CFFM technique to learn a unified representation of static
contexts and motional contexts among neighboring video
frames, both of which are of vital importance for VSS.

• To learn the global temporal contexts of videos, we pro-
pose a global temporal context mining module to explicitly
incorporate contextual information from the whole video
to the target frame.

• Without bells and whistles, we achieve state-of-the-art re-
sults for VSS on standard benchmarks by using the CFFM
technique. With the global temporal contexts incorporated,
CFFM++ further boosts the performance of VSS.

We build this paper upon our recent conference paper [1]
and significantly extend it in various ways. First, we propose
an extension method CFFM++ (Fig. 3) based on the original
framework (CFFM) to exploit global temporal contexts from the
whole video, further boosting the segmentation performance while
introducing only limited computation. Second, we provide more
in-depth discussions on motivations, related works, and implemen-
tation (§1, §4, and §5). Third, we conduct more ablation studies to
thoroughly examine each key component of the proposed method,
on top of which we provide more insights (§5). Fourth, extensive
experiments on two challenging datasets are performed to demon-
strate the effectiveness of learning global temporal contexts (§5).
Last but not least, we provide more visual results (Fig. 4) to better
show the advantages of CFFM and CFFM++.
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2 RELATED WORK

2.1 Image Semantic Segmentation
Image semantic segmentation has always been a key topic in the
vision community, mainly because of its wide applications in real-
world scenarios. Since the pioneer work of FCN [2] which adopts
fully convolution networks to make densely pixel-wise predic-
tions, a number of segmentation methods have been proposed with
different motivations or techniques [54]–[64]. For example, some
works try to design effective encoder-decoder network architec-
tures to exploit multi-level features from different network layers
[2]–[5], [28]. Some works impose extra boundary supervision to
improve the prediction accuracy of details [33], [65]–[69]. Some
works utilize the attention mechanism to enhance the semantic
representations [31], [32], [70]–[75]. Besides these talent works,
we want to emphasize that most research aims at learning powerful
contextual information [18]–[24], [26], [33], [76], including multi-
scale [24], [26]–[28], [30], [77] and global/long-range information
[18], [29], [31], [32]. The contextual information is also essential
for VSS, but video contexts are different from image contexts, as
discussed above.

2.2 Video Semantic Segmentation
Since the real world is dynamic rather than static, VSS is
necessary for pushing semantic segmentation into more practi-
cal deployments. Previous research on VSS was limited by the
available datasets [17]. Specifically, three datasets were available:
Cityscapes [7], NYUDv2 [15], and CamVid [16]. They either only
annotate several nonadjacent frames in a video clip or have a small
scale, a low frame rate, and low resolution. Fortunately, the recent
establishment of the large-scale, fully-annotated VSPW dataset
[17] solves this problem.

Most of the existing VSS methods utilize the optical flow
to capture temporal relations [11], [13], [14], [34], [35], [37],
[38], [40], [42], [78], [79]. These methods usually adopt different
smart strategies to balance the trade-off between accuracy and
efficiency [78], [79]. Among them, some works aim at improving
the segmentation accuracy by exploiting the temporal relations
using the optical flow for feature warping [11], [13], [14] or
the GAN-like architecture [80] for predictive feature learning
[12]. The other works aim at improving the segmentation ef-
ficiency by using temporal consistency for feature propagation
and reuse [37], [38], [40], [41], or directly reusing high-level
features [37], [39], or adaptively selecting the key frame [34],
or propagating segmentation results to neighbouring frames [42],
or extracting features from different frames with different sub-
networks [36], or considering the temporal consistency as extra
training constraints [35]. Zhu et al. [81] utilized video prediction
models to predict future frames as well as future segmentation
labels, which are used as augmented data for training better image
semantic segmentation models, not for VSS. Different from the
above approaches, STT [82] and LMANet [83] directly model the
interactions between the target and reference frame features to
exploit the temporal information.

The above VSS approaches explore the local temporal rela-
tion, here denoted as motional contexts. However, local temporal
contexts include two aspects: static and motional contexts. Those
methods ignore the static contexts that are important for segment-
ing complicated scenes. This paper addresses this problem by
proposing a new video context learning mechanism, capable of
learning a unified representation of static and motional contexts.

Besides, we also propose to explicitly learn global temporal con-
texts with prototype learning and attention-based feature mining.

2.3 Difference with STT
We notice that a concurrent work STT [82] also utilizes bigger
searching regions for more distant video frames and self-attention
for establishing connections across frames. While the two works
share these similarities, there are key differences between them.
First, two methods have different motivations. We target exploiting
both static and motional contexts (local temporal contexts), while
STT focuses on capturing the temporal relations among complex
regions. Note that the concept of static/motional contexts is
similar to the concept of simple/complex regions in STT. As a
result, STT models only the motional contexts, while our method
models both static and motional contexts. Second, the designs
are different. For query selection, STT selects 50% of query
locations in order to reduce the computation. However, our method
splits the query features into windows and the query features in
each window share the same contexts to reduce the computation.
For key/value selection, STT operates in the same granularity,
while our method processes the selected key/value into different
granularity, which reduces the number of tokens and models the
multi-scale information for static contexts. Third, our cross-frame
feature mining can exploit multiple transformer layers to deeply
mine the contextual information from the reference frames, but
STT only uses one layer. The reason may be that STT only updates
the query features of the selected locations and using multiple
STT layers could lead to inconsistency in the query features in un-
selected and selected locations. Moreover, this paper also exploits
global temporal contexts for further improvement.

2.4 Vision Transformer
Vision transformer, a strong competitor of convolutional neural
networks (CNNs), has been widely adopted in various vision
tasks [45], [48], [84]–[92], due to its powerful ability of mod-
eling global connection within all the input tokens. Specifically,
ViT [45] splits an image into patches to construct tokens and
processes tokens using typical transformer layers. Swin Trans-
former [48] improves ViT by introducing shifted windows when
computing self-attention. The effectiveness of transformers has
been validated in tracking [93], [94], crowd counting [92], [95],
multi-label classification [96] and so on. In the following, we
specifically discuss the transformer-based segmentation methods.

To improve segmentation using transformers, some meth-
ods [52], [89], [97]–[101] have been developed. SETR [89]
and Panoptic SegFormer [99] are the first transformer-based
models for image and panoptic semantic segmentation, respec-
tively. Generally, these works use transformers to generate global-
context-aware features. Differently, a new trend of works such
as MaskFormer [100] and Mask2Former [101] use transformer
decoders to get rid of the conventional per-pixel classification for
segmentation. ViT-Adapter [102] learns powerful representations
from large-scale multi-modal data and allows plain ViT to achieve
comparable performance to vision-specific transformers. For video
understanding, [103] and [104] exploit transformers to merge
temporal information and achieve promising results on the video
panoptic segmentation task. Despite the success of transformers
in segmentation, the use of transformer layers in VSS is non-
trivial due to the large number of tokens from video frames.
Here, we propose an effective and efficient way to model the
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temporal contextual information for VSS. A concurrent work
MRCFA [105] also works on VSS using transformers. However,
MRCFA specifically focuses on refining feature affinity maps,
while this paper focuses on learning local and global temporal
contexts for the video.

In terms of designing vision transformers to use contextual
information, Focal Transformer [85] introduces both fine-grained
and coarse-grained attention in architecture design to explore
local and global contexts in the image. Though our proposed
methods also focus on learning contexts, there are significant
differences. First, our methods focus on video contexts, while
the Focal Transformer explores image contexts. Video contexts
are much more complex than the image contexts. As illustrated
in Fig. 1, video contexts include local temporal contexts which
represent the contexts from neighboring frames, and global tem-
poral contexts which mean the contexts from the whole video.
For local temporal contexts, they can be further divided into static
and motional contexts. However, the image contexts studied in
Focal Transformer only refer to the information from a local
region of the image or the global region (the whole image).
Second, adding a new temporal dimension makes the problem
of learning contexts much more challenging and significantly
increases implementation difficulty. Third, our methods specifi-
cally focus on the VSS task, which are built upon a pre-trained
backbone/encoder. We achieve promising performance on popular
VSS datasets. Differently, the Focal Transformer proposes a new
network architecture/encoder and focuses on image understanding
tasks such as image classification, detection, and segmentation.

3 LOCAL TEMPORAL CONTEXTS

In this section, we focus our discussion on local temporal contexts.
To begin with, we introduce the technical motivation of the
proposed Coarse-to-Fine Feature Mining (CFFM) for mining the
local temporal contexts in §3.1. Then, we introduce the first sub-
operation of Coarse-to-Fine Feature Assembling (CFFA) in §3.2.
Next, we present the second sub-operation of Cross-frame Feature
Mining (CFM) in §3.3. At last, we analyze the complexity in §3.4.

3.1 Technical Motivation
Before introducing our method, we discuss our technical motiva-
tion to help readers better understand the proposed technique. As
discussed above, local temporal contexts include static contexts
and motional contexts. The former has been well exploited in
image semantic segmentation [18]–[24], [26]–[33], [77], [106],
while the latter has been studied in VSS [11], [13], [14], [34],
[35], [37]–[42], [78], [79]. However, there is no research touching
the joint learning of both static and motional contexts which are
both essential for VSS.

To address this problem, a naı̈ve solution is to simply apply
the recently popular self-attention mechanism [44]–[46] to the
video sequence by viewing the feature vector at each pixel of each
frame as a token. In this way, we can model global relationships
by connecting each pixel with all others, so all local temporal
contexts can of course be constructed. However, this naı̈ve so-
lution has three obvious drawbacks. First, a video sequence has
l + 1 times more tokens than a single image, where l + 1 is
the length of the video sequence. This would lead to (l + 1)2

times more computational cost than a single image because the
complexity of the self-attention mechanism is O(n2c), where
n is the number of tokens and c is the feature dimension [44],

[45], [48]. Such high complexity is unaffordable, especially for
VSS which needs on-time processing as the video data stream
comes in sequence. Second, such direct global modeling would
be redundant. Despite that there are some motions in a video clip,
the overall semantics/environment would not change suddenly and
most video content is repeated. Hence, most of the (self-to-self)
connections built by direct global modeling are unnecessary. Last
but not least, although self-attention can technically model global
relationships, a too-long sequence length would limit its perfor-
mance, as demonstrated in [47]–[51], [107] where downsampling
features into small scales leads to better performance than the
original long sequence length.

Instead of directly modeling global relationships, we propose
to model relationships only among necessary tokens for the joint
learning of static and motional contexts. Our CFFM technique
consists of two steps. The first step, Coarse-to-Fine Feature
Assembling (CFFA), assembles the features extracted from neigh-
bouring frames in a temporally coarse-to-fine manner based on
three observations. First, the moving objects/stuff can only move
gradually across frames in practice, and the objects/stuff cannot
move from one position to another far position suddenly. Thus,
the region of the possible positions of (a) moving object/stuff in
a frame gradually gets larger for farther frames. In other words,
for one pixel in a frame, the farther the frames, the larger the
correlated regions. Second, although some content may change
across frames, the overall semantics and environment would not
change much, which means that most video content may only
have a little temporal inconsistency. For statistical evidence, we
compute the mIoU between the ground-truth masks of consecutive
video frames on the VSPW val set [17], to show that the semantic
masks for consecutive frames are largely overlapped and the scene
changes are thus very small from a frame to its next frame. The
obtained mIoU is 89.7%, proving that the objects/background
move slowly from frame to frame. Third, the little temporal
inconsistency of the “static” content across neighbouring frames
can be easily handled by the pooling operation which is scale- and
rotation-invariant, as evidenced in previous works [2], [18], [22],
[29]. Inspired by the second and third observations, a varied-size
region sampling through the pooling operation in neighbouring
frames can convey multi-scale contextual information. Therefore,
the designed CFFA can perceive multi-scale contextual informa-
tion (static contexts) and motional contexts. Specifically, each
pixel in the target frame corresponds to a larger receptive field
and a more coarse pooling in the farther frame, as depicted in
Fig. 2. Note that the length of the sampled tokens is much shorter
than that in the default self-attention.

The second step of CFFM, Cross-frame Feature Mining
(CFM), is designed to mine useful information from the features of
neighbouring frames. This is an attention-based process. However,
unlike traditional self-attention [44]–[46] whose query, key, and
value come from the same input, we propose to use a non-self
attention mechanism, where the query is from the target frame and
the key and value are from neighbouring frames. Besides, we only
update the query during the iterative running of non-self attention,
but we keep the context tokens unchanged. This is intuitive as
our goal is to mine information from neighbouring frames and
the update of context tokens is thus unnecessary. Compared with
self-attention which needs to process all assembled features, this
non-self attention further reduces the computational cost.
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Fig. 2. Overview of the proposed Coarse-to-Fine Feature Mining for mining local temporal contexts. All frames are first input to an encoder
to extract features, which then go through the coarse-to-fine feature assembling module (CFFA). Features for different frames are processed by
different pooling strategies to generate the context tokens. The principle is that for more distant frames, a bigger receptive field and more coarse
pooling are used. The shown feature size (20 × 20), receptive field, and pooling kernel are for a simple explanation. The context tokens from all
frames are concatenated and then processed by the cross-frame feature mining (CFM) module. The context tokens are exploited to update the
target features by several multi-head non-self attention layers. Finally, we use the enhanced target features to make the segmentation prediction for
the target frame. Best viewed with zooming.

3.2 Coarse-to-Fine Feature Assembling

Without loss of generalizability, we start our discussion on train-
ing data containing nearby video frames {It−k1

, · · · , It−kl
, It}

with ground-truth masks of {St−k1
, · · · ,St−kl

,St}, and we
focus on segmenting It. Specifically, It is the target frame
and {It−k1

, · · · , It−kl
} are l previous reference frames which

are {k1, · · · , kl} frames away from It, respectively. Here,
the local temporal contexts are considered since the reference
frames are close to the target one. Let us denote U = {t −
k1, · · · , t− kl, t} as the set of frame subscripts. We first process
{It−k1

, · · · , It−kl
, It} using an encoder to extract informative

features {Ft−k1
, · · · ,Ft−kl

,Ft}, each of which has the size
of Rh×w×c (h, w, and c represent height, width, and feature
dimension, respectively). We aim to exploit the features from the
nearby frames to generate better features for segmenting It as
valuable local temporal contexts exist in previous frames.

To efficiently establish long-range interactions between the
reference frame features ({Ft−k1

, · · · ,Ft−kl
}) and the target

frame features Ft, we propose the coarse-to-fine feature assem-
bling module, as shown in Fig. 2. Inspired by previous works [48],
[85], [107], we split the target frame features Ft into windows and
each window attends to a shared context token. The reason behind
this is that attending each location in Ft to a specific context
token requires huge computation and memory costs. When using
window size of s× s, Ft is partitioned into h

s × w
s windows. We

obtain the new feature map F ′
t as follows:

Ft ∈ Rh×w×c → F ′
t ∈ R(h

s ×s)×(w
s ×s)×c

→ F ′
t ∈ R

h
s ×

w
s ×s×s×c.

(1)

Then, we generate context tokens from different frames. The
main idea is to see a bigger receptive field and use a more coarse
pooling if the frame is more distant from the target, which is why
we call this step coarse-to-fine feature assembling. The motivation

behind this is described in §3.1. Formally, we define two sets of pa-
rameters: the receptive fields r = {rt−k1

, · · · , rt−kl
, rt} and the

pooling kernel/window sizes p = {pt−k1
, · · · , pt−kl

, pt}, when
generating corresponding context tokens. For t− k1 < t− k2 <
· · · < t − kl < t, we have rt−k1

≥ rt−k2
≥ · · · ≥ rt−kl

≥ rt
and pt−k1

≥ pt−k2
≥ · · · ≥ pt−kl

≥ pt. With this definition,
we partition {Ft−k1

, · · · ,Ft−kl
,Ft} using pooling windows

p = {pt−k1
, · · · , pt−kl

, pt} to pool the features, respectively.
The result is processed by a fully connected layer (FC) for
dimension reduction. This is formulated as

Fj ∈ Rh×w×c → Ej ∈ R
h
pj

× w
pj

×(pj×pj×c)

FC→ Ej ∈ R
h
pj

× w
pj

×c
,

(2)

where j ∈ U . In Fig. 2, we have r = {20, 12, 6, 4} and p =
{4, 3, 2, 1} for all frames (3 reference and 1 target frames).

For each window partition F ′
t [i] ∈ Rs×s×c (i ∈

{1, 2, · · · , hw
s2 }) in the target features, we extract rj

pj
× rj

pj
elements

from Ej around the area where the window lies in. This can be
easily implemented using the unfold function in PyTorch [108].
Let ci,j denote the obtained context tokens from j-th frame and
for i-th window partition in the target features. We concatenate
ci,j into ci as follows,

ci = Concat[ci,j ], (3)

where j ∈ U , ci ∈ Rm×c and m =
∑

j∈U

r2j
p2
j

. The context
tokens from the target frame are obtained by using the parameter
set (rt, pt) to process the target features. In practice, we addition-
ally use another parameter set (r′t, p

′
t) to generate more contexts

from the target since the target features are more important. For
simplicity, we focus our discussion by omitting (r′t, p

′
t) and using

only (rt, pt) for the target.
To sum up, ci contains the context information from all

frames, which is used to refine the target frame features. As
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discussed in §3.1, on one hand, ci covers the tokens at possible
positions where moving objects/stuff would appear, so it can be
used for learning motional contexts. On the other hand, ci is a
multi-scale sampling of neighbouring frames with the temporal
inconsistency solved by the pooling operation, so it can be used
for learning static contexts.

3.3 Cross-frame Feature Mining

After that we obtain the context token ci for each window partition
in the target features, we propose a non-self attention mechanism
to mine useful information from neighboring frames. Unlike the
traditional self-attention mechanism that computes the query, key,
and value from the same input, our non-self attention mechanism
utilizes different inputs to calculate the query, key, and value.
Since F ′

t is the input to the first layer of our CFM module, we
re-write it as F 0

t = F ′
t . For the i-th window partition in F 0

t , the
query Qi, key Ki, and value Vi are computed using three fully
connected layers as follows:

Qi = FC(F 0
t [i]), Ki = FC(ci), Vi = FC(ci), (4)

where FC(·) represents an FC layer. Next, we use non-self
attention to update the target frame features, given by

F 1
t [i] = Softmax(

QiK
T
i√
c

+B)Vi + F 0
t [i], (5)

where B represents the position bias, following [48]. Note that
we omit the formulation of the multi-head attention [44], [45] for
simplicity. Eq. (4) and Eq. (5) are repeated for N steps, and we
finally obtain the enhanced feature FN

t ∈ Rh
s ×

w
s ×s×s×c for the

target video frame. Local temporal contexts, i.e., static and mo-
tional contexts, from neighbouring video frames are continuously
exploited to learn better representative features for segmenting the
target frame. Note that in this process, we do not update the con-
text tokens ci for simplicity/elegance and reducing computation.
Since this step is to mine useful information from the reference
frames, it is also unnecessary to update ci. This is the advantage
of non-self attention.

To generate segmentation predictions, we reshape FN
t into

Rh×w×c and concatenate FN
t with Ft. Then, a simple MLP

projects the features to segmentation logits Rt. The common
cross-entropy loss (CE) is computed between Rt and ground-truth
mask St. Auxiliary losses on original features are also computed.
During inference, our method does not need to extract features for
all l + 1 frames when processing It. Instead, the features of the
reference frames, which are the frames before the target frame,
have already been extracted in previous steps. Only the target
frame is passed to the encoder to generate Ft, and then features
{Ft−k1

, · · · ,Ft−kl
,Ft} for all frames are passed to CFFM for

representation enhancement.

3.4 Complexity Analysis

Here, we formally analyze the complexity of the proposed
CFFM and the recent popular self-attention mechanism [44]–[46]
when processing video clip features {Ft−k1 , · · · ,Ft−kl

,Ft}.
The coarse-to-fine feature assembling (Eq. (2)) has the complexity
of O((l + 1)hwc), which is irrespective of p. The cross-frame
feature mining has two parts: Eq. (4) has the complexity of
O(hwc2) + O(mc2), and Eq. (5) is with the complexity of

O(hwmc). As mentioned early, m =
∑

j∈U

r2j
p2
j

. To sum over,
the complexity of our method is given by

O(CFFM) = O(hwmc) +O(hwc2) +O(mc2)

+O((l + 1)hwc)

= O(hwmc) +O(hwc2),

(6)

where the derivation is conducted by removing less significant
terms. For the self-attention mechanism [44]–[46], the complexity
is O((l+1)2h2w2c)+O((l+1)hwc2). Since m ≪ (l+1)2hw,
the complexity of the proposed approach is much less than the
self-attention mechanism. Take the example in Fig. 2, m = 66
while (l + 1)2hw = 6400.

4 GLOBAL TEMPORAL CONTEXTS

In this section, we focus our discussion on the global temporal
contexts. We start by explaining the process of extracting global
temporal contextual information (prototypes). Then, we discuss
how to exploit the generated contextual prototypes to refine the
features of the target frame.

4.1 Global Temporal Contextual Prototypes
In the last section (§3), we discuss how to learn local temporal con-
texts among nearby video frames {It−k1

, · · · , It−kl
, It}. Here,

we propose to learn global temporal contexts to make the model
have a much larger temporal view. To start with, we represent
the corresponding whole video as V = {I1, · · · , It, · · · , IT },
containing a total of T frames. Similar to §3.2, we aim to
segment the target frame It without losing generalizability. In the
following, we explain the process of extracting the global temporal
contextual information.

Our technique is built on the CFFM introduced in §3. Once
CFFM is trained, the encoder has the ability to generate infor-
mative features for each frame of the video. We first use the
trained encoder to extract features for a subset of frames in
the video V . Specifically, the subset of frames are uniformly
sampled from V by a fixed step d, which are denoted as
V̄ = {I1, I1+d, · · · , I1+(f−1)∗d}. Here, a total of f frames

are sampled and d =
⌊
T
f

⌋
. We conduct the sampling for three

reasons: 1) the original video V has many frames (average
T = 71 for VSPW [17]), and it is unaffordable to explicitly
extract global temporal contexts from all T frames; 2) the contents
in nearby frames have already been modeled by CFFM through
static and motional contexts; 3) most contents in nearby frames
are redundant and the sampled V̄ contains enough contexts from
a global temporal view. The corresponding extracted features for
the sampled frames are {F1,F1+d, · · · ,F1+(f−1)∗d}.

Next, we tokenize the extracted features and treat the feature
vector at each pixel as a token, resulting in tokens o ∈ RNo×c,
where No = fhw is the total number of tokens. Those tokens
contain the global temporal contexts for the whole video. How-
ever, it is impractical to exploit o due to the large number of
tokens. Inspired by prototype learning [109], [110], we exploit un-
supervised clustering to extract typical contextual prototypes from
o. This largely reduces the number of tokens for the following
processing, thus saving computational resources. The extracted
prototypes still contain the necessary and relevant contexts for
the whole video, while having a much smaller size and more
condensed information. In our experiments, we use k-means to
generate contextual prototypes p ∈ RNp×c from o ∈ RNo×c,
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Fig. 3. Overview of the proposed CFFM++ for additionally mining global temporal contexts. Due to the large number of frames in the video,
we uniformly sample frames by a fixed step. The sampled video frames go through the encoder trained by CFFM and corresponding features
are generated. After tokenizing the feature maps, we conduct unsupervised clustering (k-means) to reduce the tokens’ number and learn global
contextual prototypes. The obtained prototypes and the target frame features are passed to CFM, which enables the refinement of the target frame
using global temporal contexts. The final predictions of CFFM++ are given by the weighted summation of the segmentation logits from learning
local (CFFM) and global temporal contexts.

where Np ≪ No. In our experiments, Np is set to 100 unless
otherwise specified.

Due to the selection of video frames across the whole video
and the use of GPU-based k-means clustering, the process of
generating global temporal contextual prototypes is fast and does
not significantly decrease the speed, which will be shown in our
experiments (§5.2).

4.2 Global Temporal Context Mining

After obtaining global temporal contextual prototypes p, we again
exploit the CFM module to mine the global temporal contexts
for refining the features of the target frame. F ′

t is input to the
first layer of the CFM module and we re-write it as G0

t = F ′
t .

Specifically, for the i-th window partition in G0
t (F ′

t ), the query
Qi, key Ki, and value Vi are computed using three fully connected
layers as follows:

Qi = FC(G0
t [i]), Ki = FC(p), Vi = FC(p). (7)

Here, the contextual prototypes p contain the contexts from the
whole video and are shared for all the patches of the target frame
in the video. Next, we use non-self attention to update the target
frame features, as follows:

G1
t [i] = Softmax(

QiK
T
i√
c

)Vi +G0
t [i], (8)

Similar to CFFM (§3.3), Eq. (7) and Eq. (8) are repeated for Ng

times. After refined by the global temporal contextual prototypes,
the final feature for the target frame is given by G

Ng

t , which is
reshaped into Rh×w×c.

To generate segmentation predictions, a simple MLP is used
to project GNg

t into segmentation logits R̂t. During training, the
cross entropy loss (CE) is computed between R̂t and St. During
inference, we combine the logits learned from local and global
temporal contexts in a weighted manner, i.e., R̄t = λR̂t+Rt. In
our experiment, we set λ to be 0.5. The method using predictions
given by R̄t is denoted as CFFM++, which is the extended version
of CFFM by additionally exploiting global temporal contexts.

5 EXPERIMENTS

5.1 Experimental Setup

Implementation details for CFFM. We implement our ap-
proach based on the mmsegmentation [112] codebase and
conduct all experiments on 4 NVIDIA RTX 6000 GPUs (24G
memory). The backbones are the same as SegFormer [52], which
are all pretrained on ImageNet [113]. For other parts of our model,
we adopt random initialization. Our model uses 3 reference frames
unless otherwise specified, and we have {k1, k2, k3} = {9, 6, 3},
following [17]. We found that this selection of reference frames is
enough to model local temporal contexts and achieve impressive
performance. For the receptive field, pooling kernel, and window
size, we set r = {49, 20, 6, 7}, p = {7, 4, 2, 1}, and s = 7. For
the target frame, we additionally have r′t = 35 and p′t = 5. Dur-
ing training, we adopt augmentations including random resizing,
flipping, cropping, and photometric distortion. We use the crop
size of 480× 480 for the VSPW dataset [17] and 512× 1024 for
Cityscapes [7]. For optimizing parameters, we use the AdamW
and “poly” learning rate schedule with an initial learning rate
of 6e-5. The network is trained for 160k iterations, following
SegFormer [52]. During testing, we conduct single-scale testing
and resize all images on VSPW to the size of 480 × 853 and
512×1024 for Cityscapes. Note that for efficiency and simplicity,
the predicted mask is obtained by feeding the whole image to the
network, rather than using the sliding window as in [89]. We do
not use any post-processing such as CRF [114].
Impelmentation details for CFFM++. Our CFFM++ is built
on CFFM. Once CFFM is trained, the corresponding encoder
has the ability to extract informative features from video frames.
Hence, we use the trained encoder from CFFM as the feature
extractor for generating the global temporal contextual prototypes
(§4.1). When generating prototypes, we set the number of sampled
video frames (f ) as 10 for all videos. The number of prototypes
Np = 100. When mining the global temporal contexts, we set
Ng as 1 for small models (MiT-B0 and MiT-B1) and 2 for large
models. During the training of CFFM++, we freeze the encoder
and CFFM parameters, while only updating the multi-head non-
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TABLE 1
Comparison with state-of-the-art methods on the VSPW [17] validation set. Our models outperform the compared methods, with better

balance in terms of model size, accuracy, latency, and speed. Both FPS and MACs are computed with the input size of 480× 853.

Methods Backbone Params (M) ↓ mIoU ↑ Weighted IoU ↑ mVC8 ↑ mVC16 ↑ MACs (G) ↓ FPS (f/s) ↑
SegFormer [52] MiT-B0 3.8 32.9 56.8 82.7 77.3 14.6 73.4
SegFormer [52] MiT-B1 13.8 36.5 58.8 84.7 79.9 33.0 58.7
CFFM (Ours) MiT-B0 4.7 35.4 58.5 87.7 82.9 25.6 43.1
CFFM (Ours) MiT-B1 15.5 38.5 60.0 88.6 84.1 55.4 29.8
CFFM++ (Ours) MiT-B0 5.7 35.9 58.9 88.4 83.8 34.3 40.4
CFFM++ (Ours) MiT-B1 16.5 39.9 60.7 89.1 84.9 64.2 27.6
DeepLabv3+ [28] ResNet-101 62.7 34.7 58.8 83.2 78.2 - -
UperNet [111] ResNet-101 83.2 36.5 58.6 82.6 76.1 - -
PSPNet [29] ResNet-101 70.5 36.5 58.1 84.2 79.6 - 13.9
OCRNet [21] ResNet-101 58.1 36.7 59.2 84.0 79.0 - 14.3
ETC [35] PSPNet 89.4 36.6 58.3 84.1 79.2 - -
NetWarp [111] PSPNet 89.4 37.0 57.9 84.4 79.4 - -
ETC [35] OCRNet 58.1 37.5 59.1 84.1 79.1 - -
NetWarp [111] OCRNet 58.1 37.5 58.9 84.0 79.0 - -
TCBst-ppm [17] ResNet-101 70.5 37.5 58.6 87.0 82.1 - 10.0
TCBst-ocr [17] ResNet-101 58.1 37.4 59.3 86.9 82.0 - 5.5
TCBst-ocr-mem [17] ResNet-101 58.1 37.8 59.5 87.9 84.0 - 5.5
SegFormer [52] MiT-B2 24.8 43.9 63.7 86.0 81.2 57.2 39.2
SegFormer [52] MiT-B5 82.1 48.2 65.1 87.8 83.7 187.0 17.2
CFFM (Ours) MiT-B2 26.5 44.9 64.9 89.8 85.8 79.6 23.8
CFFM (Ours) MiT-B5 85.5 49.3 65.8 90.8 87.1 232.2 11.3
CFFM++ (Ours) MiT-B2 28.5 45.5 64.7 90.2 86.4 96.9 21.5
CFFM++ (Ours) MiT-B5 87.5 50.1 66.5 90.8 87.4 249.5 10.4

TABLE 2
Comparison with state-of-the-art methods on the VSPW [17] test
set. Our model outperforms the compared methods. ∗ means the test

results are from [17].

Methods Backbone Params (M) mIoU mVC8 mVC16

SegFormer [52] MiT-B0 3.8 30.9 81.6 75.7
SegFormer [52] MiT-B1 13.8 33.5 82.6 76.9
CFFM (Ours) MiT-B0 4.7 31.8 86.3 80.9
CFFM (Ours) MiT-B1 15.5 35.1 87.2 82.2
CFFM++ (Ours) MiT-B0 5.7 32.8 87.4 82.4
CFFM++ (Ours) MiT-B1 16.5 36.0 87.9 83.2
DeepLabv3+∗ [28] ResNet-101 62.7 32.2 81.0 75.0
UperNet∗ [111] ResNet-101 83.2 33.5 79.3 73.3
PSPNet∗ [29] ResNet-101 70.5 33.8 83.4 78.3
OCRNet∗ [21] ResNet-101 58.1 34.0 82.9 77.4
ETC∗ [35] PSPNet 89.4 33.8 82.8 77.1
NetWarp∗ [111] PSPNet 89.4 33.7 82.6 77.1
ETC∗ [35] OCRNet 58.1 34.6 83.1 78.0
NetWarp∗ [111] OCRNet 58.1 35.0 83.2 77.2
TCBst-ppm

∗ [17] ResNet-101 70.5 34.6 85.2 80.2
TCBst-ocr

∗ [17] ResNet-101 58.1 35.1 85.1 80.1
TCBst-ocr-mem

∗ [17] ResNet-101 58.1 35.6 86.2 81.9
SegFormer [52] MiT-B2 24.8 40.0 84.9 79.8
CFFM (Ours) MiT-B2 26.5 41.0 88.4 83.6
CFFM++ (Ours) MiT-B2 28.5 42.0 88.9 84.7

self attention modules since CFFM is already well-optimized.
This also reduces the training iterations needed for fine-tuning
the newly added non-self attention modules. For this fine-tuning,
we only use 40k iterations. The learning rate is set as 2e-4. Other
settings are kept the same as CFFM.

Datasets. Our experiments are mainly conducted on the VSPW
dataset [17], which is the largest VSS benchmark. Its training,
validation, and test sets have 2,806 clips (198,244 frames), 343
clips (24,502 frames), and 387 clips (28,887 frames), respectively.
It contains diverse scenarios including both indoor and outdoor
scenes, annotated for 124 categories. More importantly, VSPW has
dense annotations with a high frame rate of 15fps, making itself

the best benchmark for VSS till now. In contrast, previous datasets
used for VSS only have very sparse annotation, i.e., only one frame
out of many consecutive frames is annotated. Both training and
validation sets of VSPW are publicly available while the test set is
not open. However, the test performance can be obtained from the
VSPW2021 challenge server. On the server, the test is split into
the development part and the final part, and only evaluation on
the final part is available. We obtain the performance on the test
set through the server. In addition to VSPW, we also evaluate the
proposed method on the Cityscapes dataset [7], which annotates
one frame out of every 30 frames.
Evaluation metrics. Following previous works [2], we use
mean IoU (mIoU), and weigheted IoU to evaluate the segmen-
tation performance. In addition, we also adopt video consistency
(VC) [17] to evaluate the smoothness of the predicted segmen-
tation maps in the temporal domain. Formally, for a video clips
{It}Tt=1 with ground-truth segmentation masks {St}Tt=1 and
predicted masks {S′

t}Tt=1, VCn is computed as follows,

VCn =
1

T − n+ 1

T−n+1∑
i=1

(∩i+n−1
i Si) ∩ (∩i+n−1

i S′
i)

∩i+n−1
i Si

, (9)

where T ≥ n. After computing VCn for every video, we obtain
the mean of VCn for all videos as mVCn. The purpose of this
metric is to evaluate the level of consistency in the predicted
masks among those common areas (pixels’ semantic labels do not
change) across long-range frames. For more details, please refer to
[17]. Note that, to compute the VC metric, the ground-truth masks
for all frames are needed.

The details of computing FPS are as follows. The FPS is
measured in mini-batches with the batch size set to 2. We keep
note of the computation time T for processing K mini-batches.
The FPS can be calculated by 2K/T . We set the batch size to
2 because this leads to high usage (>95%) of GPU, which is
common in this community. We computed the FPS for all methods
in the same way for fair comparisons.
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TABLE 3
Comparison with recent efficient VSS methods on the

Cityscapes [7] dataset. Our methods are superior to the compared
methods.

Methods Backbone Params (M) mIoU FPS (f/s)
FCN [2] MobileNetV2 9.8 61.5 14.2
CC [37] VGG-16 - 67.7 16.5
DFF [40] ResNet-101 - 68.7 9.7
GRFP [14] ResNet-101 - 69.4 3.2
PSPNet [29] MobileNetV2 13.7 70.2 11.2
DVSN [34] ResNet-101 - 70.3 19.8
Accel [38] ResNet-101 - 72.1 3.6
ETC [35] ResNet-18 13.2 71.1 9.5
SegFormer [52] MiT-B0 3.7 71.9 58.5
CFFM (Ours) MiT-B0 4.6 74.0 34.2
CFFM++ (Ours) MiT-B0 5.1 74.3 28.8
SegFormer [52] MiT-B1 13.8 74.1 46.8
CFFM (Ours) MiT-B1 15.4 75.1 23.6
CFFM++ (Ours) MiT-B1 15.9 75.7 20.4

5.2 Comparison with State-of-the-art Methods

Results on CFFM. We compare the proposed method with
state-of-the-art VSS methods on VSPW [17] in Tab. 1. The results
are analyzed from different aspects. For small models (number
of parameters less than 20M), CFFM outperforms corresponding
baselines with a clear margin, while introducing limited model
complexity. For example, using the backbone MiT-B0, CFFM
has 2.5% mIoU gain over the strong baseline of SegFormer [52],
with the cost of increasing the parameters from 13.8M to 15.5M,
increasing MACs from 33.0G to 55.4G, and reducing the FPS
(frames per second) from 73.4 (f/s) to 43.1 (f/s). Our method
also provides much more consistent predictions for the videos,
outperforming the baseline with 5.0% and 5.6% in terms of
mVC8 and mVC16, respectively. Note that both metrics mVC8

and mVC16 provide an evaluation of visual consistency within
predicted masks for videos, as verified in [17].

For large models (number of parameters > 20M), CFFM
achieves state-of-the-art performance in this challenging dataset
and also generates visually consistent results. Specifically, our
model using MiT-B2 has 26.5M parameters (slightly larger than
SegFormer [52]) and achieves 44.9% mIoU at the FPS of 23.8
(f/s), using 79.6G MACs. Our large model (based on MiT-B5)
achieves mIoU of 49.3% and performs best in terms of visual
consistency, with mVC8 and mVC16 of 90.8% and 87.1%, re-
spectively. To summarize, for all backbones (MiT-B0, MiT-B1,
MiT-B2, and MiT-B5), CFFM clearly outperforms the correspond-
ing baseline, showing that the proposed modules are stable and
provide consistent performance improvement. The results validate
the effectiveness of the proposed coarse-to-fine feature assembling
(CFFA) and cross-frame feature mining (CFM) in mining relevant
information (local temporal contexts) from nearby frames.

We also obtain results on the test set of the VSPW dataset
from the VSPW2021 challenge server, which is shown in Tab. 2.
We can observe that the proposed CFFM surpasses the considered
approaches. For example, upon MiT-B1, CFFM is clearly better
than the baseline (SegFormer), with an mIoU gain of 1.6%. The
experimental results on the Cityscapes [7] dataset are shown in
Tab. 3. Our method is compared with recent efficient segmentation
methods. Only using 4.6M parameters, CFFM obtains 74.0%
mIoU with an FPS of 34.2 (f/s), achieving an excellent balance on
model size, accuracy, and speed. When using a deeper backbone,
we achieve 75.1% mIoU with an FPS of 23.6 (f/s). Note that

TABLE 4
Ablation study on the number of attention layers in CFM.

Methods N mIoU mVC8 mVC16 Params (M)
MiT-B0

SegFormer [52] - 32.9 82.7 77.3 3.8

CFFM (Ours) 1 35.4 87.7 82.9 4.7
2 35.7 87.7 83.0 5.5

MiT-B1
SegFormer [52] - 36.5 84.7 79.9 13.8

CFFM (Ours)

1 37.8 88.3 83.6 14.6
2 38.5 88.6 84.1 15.5
3 38.7 88.6 84.1 16.3
4 38.8 88.5 83.9 17.2

TABLE 5
Ablation study on the selection of the reference frames. We use

MiT-B1 as the backbone.

Methods k1 k2 k3 mIoU mVC8 mVC16

SegFormer - - - 36.5 84.7 79.9

CFFM (Ours)

- - 3 37.4 87.4 82.4
- - 6 37.7 88.0 83.3
- - 9 37.9 88.4 83.9
3 2 1 37.7 88.3 83.6
9 6 3 38.5 88.6 84.1

this dataset has sparse annotations, the excellent performance
demonstrates that our method works well for both fully supervised
and semi-supervised settings.
Results on CFFM++. CFFM++, the extension of CFFM by ad-
ditionally exploring global temporal contexts, achieves consistent
improvements over CFFM on the VSPW dataset under all studied
backbones while introducing limited computation resources. For
example, using MiT-B1, CFFM++ obtains an mIoU gain of 1.4%
over CFFM and generates more visually consistent predictions
with a gain of 0.8% in the metric mVC16. We also compute
the average improvement of CFFM++ over CFFM across various
backbones. On average, CFFM++ noticeably outperforms CFFM
by 0.9 and 1.0 point on the VSPW val and test sets, respectively.
The improvements are valid for all datasets and backbones, show-
ing the effectiveness of mining global temporal contexts.

We also observe that CFFM++ is efficient in terms of model
size and computation speed. For example, with MiT-B1, CFFM++
only increases the number of parameters from 15.5M to 16.5M
and reduces the FPS from 29.8 (f/s) to 27.6 (f/s), compared
with CFFM. The reasons why the proposed CFFM++ does not
noticeably increase the latency are in three aspects. First, the
number of global contextual prototypes is very small, i.e., 100 in
our main experiments. Second, in CFM, only 2 non-self attention
layers are used. Third, the decoder (Fig. 2 and Fig. 3) is very small,
comprising a single convolutional layer mapping to class logits,
following SegFormer [52]. It means that the additional latency
caused by mining global temporal contexts (CFFM++) is very
insignificant, compared to the computation of CFFM. Therefore,
CFFM++ is only a little slower than CFFM.
Qualitative Results. The qualitative results are shown in Fig. 4.
For the given examples, CFFM resolves the inconsistency existing
in the predictions of the baseline, as it exploits the local temporal
contexts within nearby frames. Build upon CFFM, CFFM++
further improves the per-frame prediction accuracy and temporal
consistency by utilizing the global temporal contexts within a long
range of video frames.
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Fig. 4. Qualitative results for two video clips. We compare the proposed methods with the baseline (SegFormer [52]) visually. From top to down:
the input video frames, the predictions of SegFormer [52], CFFM predictions, CFFM++ predictions and the ground truth (GT). It shows that CFFM
produces more accurate and consistent results, compared to the strong baseline. Furthermore, by using global temporal contexts, CFFM++ further
improves over CFFM. Best viewed in color.

5.3 Ablation Study

All ablation studies are conducted on the large-scale VSPW [17]
dataset and follow the same training strategies as described above,
for a fair comparison.
Influence of the number of attention layers. Tab. 4 shows
the performance of CFFM with respect to the number of non-self
attention layers in the CFM module. For two backbones of MiT-
B0 [52] and MiT-B1 [52], CFFM clearly outperforms the corre-
sponding baseline (SegFormer) when using only a single attention
layer and introducing a small number of additional parameters.
It demonstrates the effectiveness of the proposed CFFA module
and the non-self attention layer. The former efficiently extracts
the local temporal contexts from the nearby frames and the latter

effectively mines the contextual information to refine target frame
features. In addition, we observe there is a trade-off between
performance and the model complexity (number of parameters) on
the MiT-B1 backbone. When using more attention layers within
the CFM module, better mIoU is obtained while the model size
linearly increases. For our method (CFFM) on MiT-B1, we choose
N = 2 since a better trade-off is observed.

Impact of selection of reference frames. We study the impact
of the selection of reference frames for learning local temporal
contexts in Tab. 5. We start by using a single reference frame.
There seems to be a trend that when increasing the distance be-
tween the reference frame and the target frame, better performance
is obtained. The reason for this is that the more faraway reference



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

frame may contain richer and more different contexts which com-
plements the contexts of the target frame. This also suggests that
extracting global temporal contexts from the whole video is useful.
When using more reference frames (k1 = 9, k2 = 6, k3 = 3),
the best performance with mIoU of 38.5% is achieved. It is
worth noting that CFFM using reference frames combination of
k1 = 3, k2 = 2, and k3 = 1, only achieves segmentation
mIoU of 37.7% and performs similarly as the cases when using
a single reference frame. It is possibly due to the fact that the
very close reference frames do not give much new information for
segmenting the target frame, as also shown in [17].
Impact of CFFA and CFM. Starting from SegFormer [52],
we only add CFFA to extract contextual tokens. To mine the
generated contexts, we use an MLP to process them, which are
finally merged with the target features. For this variant of only
using CFFA, we obtain a mIoU of 37.6%, outperforming the
baseline with a mIoU of 36.5% by 1.1% gain. Then, we add both
CFFA and CFM on top of the baseline, which is our final model
(CFFM) for learning local temporal contexts. The segmentation
performance (mIoU) for CFFM is 38.5%. These facts verify that
both CFFA and CFM modules are valuable and essential to the
proposed CFFM mechanism for learning local temporal contexts.
Impact on the Receptive Fields. To investigate the im-
pact of receptive fields, we conduct ablation study on different
r = {rt−k1 , rt−k2 , rt−k3 , r}. As mentioned previously, we use
three reference frames, with k1 = 9, k2 = 6, and k3 = 3,
following [17]. Note that larger receptive fields mean that the
larger region/context is used by the network and more context
tokens are generated, leading to more computational cost in the
proposed CFM module. For fairness, when studying the impact
of r, we keep other parameters unchanged. The ablation study is
conducted on the VSPW [17] validation set.

The results are shown in Tab. 6. We have several observations.
First, when using small receptive fields, our method achieves the
mIoU of 37.2%, which is already better than the baseline (Seg-
Former [52]) with the mIoU of 36.5%. Second, when increasing
the receptive fields so that the model can see larger regions in far-
ther frames, the performance significantly improves, from 37.2%
to 39.2%, implying the value of static and motional contexts.
Third, further increasing the receptive fields to {49, 35, 21, 7}
does not boost performance. The possible reason is that when
receptive fields become large enough, no further useful contexts
can be exploited. In general, using a reasonable r gives good
performance and our method is robust to the reasonable choice
of the receptive fields r.
Impact on the Pooling Windows. To investigate the impact of
pooling kernels/windows, we conduct ablation study on different
p = {pt−k1 , pt−k2 , pt−k3 , pt}, where k1 = 9, k2 = 6, and k3 =
3, following [17]. While ablating p, we keep other parameters the
same for fair comparisons. Note that a smaller pooling window
indicates more fine-grained features are extracted, and hence more
context tokens are generated, leading to more computational cost
in our multi-head non-self attention layer. The ablation study is
conducted on the VSPW [17] validation set.

The results are shown in Tab. 7. First, for different choices
of pooling windows p, our method is much better than the
SegFormer [52] baseline with mIoU of 36.5%. When increasing
the granularity (more fine-grained features are exploited) from
{7, 7, 7, 1} to {7, 5, 3, 1}, and to {5, 3, 3, 1}, better mIoU scores
are obtained, i.e., from 38.3% to 38.5%, and to 38.7%. In general,

TABLE 6
Ablation study on the impact of the receptive fields. The used
backbone is MiT-B1. The proposed method is robust to reasonable

receptive fields.

r mIoU mVC8 mVC16

{7,5,3,7} 37.2 88.0 83.4
{21,15,9,7} 38.0 88.2 83.6
{35,15,9,7} 38.3 88.2 83.7
{49,15,9,7} 38.7 88.0 83.3
{49,20,6,7} 38.5 88.6 84.1
{49,25,15,7} 39.2 88.6 84.1
{49,35,21,7} 38.8 88.6 84.1

TABLE 7
Ablation study on the impact of the pooling windows. The used
backbone is MiT-B1. The proposed method is robust to the choice of

pooling windows.

p mIoU mVC8 mVC16

{5,3,3,1} 38.7 88.2 83.7
{7,5,3,1} 38.5 88.6 84.1
{7,7,7,1} 38.3 88.3 83.8

our method is robust to the choice of p and the reasonable p gives
a good performance.
Ablation on local and global temporal contexts. In this exper-
iment, we study the impact of local temporal contexts (static and
motional contexts) and global temporal contexts on performance.
Different from previous methods, the proposed CFFM can learn
both static and motional contexts (local temporal contexts) in
a unified model. When CFFM predicts the segmentation mask
for the current frame, it uses three previous frames as reference
frames. Based on CFFM, we further propose CFFM++ which
extends CFFM by further adding global temporal contexts. The
results for this ablation study are shown in Tab. 8. We start from
“Baseline” method (A) which means SegFormer with MiT-B1
backbone. We simulate a case where only static contexts can
be used, by replicating the current frame three times and using
them as the reference frames. In this way, only static contexts
could be used since all the reference frames are the same as
the current one. We denote this experiment as “Baseline+static
contexts” (B). We also conduct experiments on only adding global
temporal contexts on “Baseline”, which leads to D. By adding
global temporal contexts on CFFM (C), we obtain our full model
CFFM++ (F). Following our setting in ablation studies, we use the
VSPW val dataset.

From the table, it can be seen that by adding static contexts to
the baseline (A), a mIoU gain of 2.2 is achieved. However, this
variant (B) does not show improvements in temporal consistency
metrics mVC8 and mVC16 since no temporal information from
neighboring frames is used. When adding static/motional contexts
to the baseline, the method is CFFM (C) and achieves performance
gains in all metrics mIoU, mVC8 and mVC16. By further adding
global temporal contexts on top of CFFM, we get our full model
CFFM++ (F) which outperforms CFFM, showing the effectiveness
of global temporal contexts. By comparing D and A, we can also
see the power of global temporal contexts.
Ablation on the number of frames. For CFFM, the number of
frames being used to extract local temporal contexts is Nf = l+1,
where l is the number of reference frames as introduced in §3. To
fairly study the impact of the number of frames, we also set the
hyperparameter f (§4) for extracting global temporal contexts to
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TABLE 8
Ablation study on local temporal contexts (static and motional contexts) and global temporal contexts.

Symbol Methods mIoU mVC8 mVC16

A Baseline 36.5 84.7 79.9
B Baseline+static contexts 37.7 84.4 79.4
C Baseline+static/motional contexts (CFFM) 38.5 88.6 84.1
D Baseline+global temporal contexts 38.4 85.0 80.3
E Baseline+static contexts+global temporal contexts 39.2 85.5 80.8

F Baseline+static/motional contexts
+global temporal contexts (CFFM++) 39.9 89.1 84.9

TABLE 9
Ablation study on the number of input frames.

Nf Methods mIoU mVC8 mVC16

4
CFFM 38.5 88.6 84.1
CFFM+ 38.0 84.9 80.1
CFFM++ 39.6 88.8 84.6

6
CFFM 38.8 89.1 84.4
CFFM+ 38.2 85.1 80.2
CFFM++ 40.0 89.4 85.3

TABLE 10
Ablation study on the number (Np) of extracted prototypes. We

use MiT-B1 as the backbone.

Methods Np mIoU mVC8 mVC16

CFFM (Ours) - 38.5 88.6 84.1

CFFM++ (Ours)

10 39.5 88.7 84.5
50 39.8 89.0 84.8

100 39.9 89.1 84.9
200 39.7 89.0 84.8

TABLE 11
Study on effectiveness of prototypes. We use prototypes extracted

from different backbone models for CFFM++ (MiT-B0).

Methods Prototypes Model mIoU mVC8 mVC16

CFFM++
(MiT-B0)

MiT-B0 35.9 88.4 83.8
MiT-B1 38.0 88.7 84.6
MiT-B2 39.1 89.1 85.1
MiT-B5 39.6 89.3 85.4

be l. Hence, the number of frames being used for local and global
temporal contexts is the same. In this part, we ablate on Nf . We
also show the result of a variant CFFM+, which only uses global
temporal contexts. The results are shown in Tab. 9.

From the table, it can be seen that when using the same
number of frames for extracting local and global temporal con-
texts, CFFM++ always outperforms CFFM. This is due to the
fact that CFFM++ (using local and global temporal contexts) is
built on top of CFFM (using local temporal contexts). Comparing
CFFM+ and CFFM, we can observe CFFM is slightly better than
CFFM+, since local temporal contexts are more informative than
the global temporal contexts. The fact that CFFM++ outperforms
both CFFM and CFFM+ shows that local temporal contexts and
global temporal contexts are complementary.
Influence of the number of global temporal contextual proto-
types. In our experiments, we set the number (Np) of contextual
prototypes as 100 when extracting global temporal information.
Here, we study the influence of this parameter. The results are
shown in Tab. 10. we observe that compressing the global temporal
contexts into only 10 prototypes already gives promising results.
It demonstrates the effectiveness of the global temporal contexts

and that the information from faraway video frames can provide
additional guidance to help segment the target frame. When
increasing the number of generated prototypes from 10 to 100,
better performance can be achieved due to the fact that more
detailed contexts are extracted and exploited. However, further
extracting more (e.g., 200) contextual prototypes does not help.
For a certain video, a good number (e.g., 100) of prototypes could
already represent the existing contextual information well. Further
increasing the number of prototypes will not significantly include
more information. This is consistent with the discovery in the few-
shot semantic segmentation paper ASGNet [110].
Knowledge distillation of global temporal contextual proto-
types. Here, we conduct knowledge distillation experiments
using global temporal contextual prototypes. Specifically, the pro-
totypes (with size of R100×256) extracted from large models (MiT-
B5, MiT-B2, MiT-b1) are used by CFFM++ on small backbone
(MiT-B0). This study can be interpreted from the perspective of
knowledge distillation. We distill knowledge from large models to
the small model, through the extracted contextual prototypes. The
results are shown in Tab. 11. It can be observed that by simply
replacing the prototypes from MiT-B0 with the prototypes from
MiT-B1, MiT-B2, and MiT-B5, significant performance improve-
ments are obtained for CFFM++ (MiT-B0), which demonstrates
the extracted prototypes contain rich contextual information.

6 CONCLUSION AND FUTURE WORK

The video contexts contain local temporal contexts which repre-
sent the contextual information from neighbouring/nearby frames
and global temporal contexts which indicate the contexts from
the whole video. This paper first studies local temporal contexts
which can be further divided into static contexts and motional
contexts within the nearby frames. Previous methods pay much
attention to motional contexts but ignore the static contexts. We
propose a Coarse-to-Fine Feature Mining (CFFM) technique to
jointly learn a unified presentation of static and motional contexts,
for precise and efficient VSS. CFFM contains two parts: Coarse-
to-Fine Feature Assembling (CFFA) and Cross-frame Feature
Mining (CFM). The former summarizes contextual information
with different granularity for different frames, according to their
distance to the target frame. The latter efficiently mines the
contexts from neighbouring frames to enhance the feature of the
target frame. To make use of global temporal contexts, we further
propose CFFM++ which abstracts global temporal contextual
prototypes from the video by unsupervised clustering and then
exploits them to improve the target frame features. Extensive
experiments show that CFFM boosts segmentation performance
in a clear margin while adding limited computational cost. What’s
more, CFFM++ clearly surpasses CFFM with the help of global
temporal information.
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For future work, in addition to the above two aspects (local
and global temporal contexts), the following two directions are
promising. First, our exploration of contextual information for
VSS focuses on simultaneously learning temporal contexts for
all semantic categories. Considering the relationships amongst
various categories (e.g., horses is often related to the grassland),
the explicit modeling of class-specific temporal contexts is also
an interesting direction to explore. Second, it would be also
interesting to extend our methods to other video tasks that require
the learning of temporal contexts.
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