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Abstract—With the success of deep learning in classifying short trimmed videos, more attention has been focused on temporally
segmenting and classifying activities in long untrimmed videos. State-of-the-art approaches for action segmentation utilize several
layers of temporal convolution and temporal pooling. Despite the capabilities of these approaches in capturing temporal dependencies,
their predictions suffer from over-segmentation errors. In this paper, we propose a multi-stage architecture for the temporal action
segmentation task that overcomes the limitations of the previous approaches. The first stage generates an initial prediction that is
refined by the next ones. In each stage we stack several layers of dilated temporal convolutions covering a large receptive field with few
parameters. While this architecture already performs well, lower layers still suffer from a small receptive field. To address this limitation,
we propose a dual dilated layer that combines both large and small receptive fields. We further decouple the design of the first stage
from the refining stages to address the different requirements of these stages. Extensive evaluation shows the effectiveness of the
proposed model in capturing long-range dependencies and recognizing action segments. Our models achieve state-of-the-art results
on three datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset.

Index Terms—Temporal action segmentation, temporal convolutional network
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1 INTRODUCTION

A CTION recognition from video has been an active re-
search area in computer vision in the past few years.

Most of the efforts, however, have been focused on clas-
sifying short trimmed videos [1], [2], [3], [4]. Despite the
success of these approaches on trimmed videos with a single
activity, their performance is limited on long videos contain-
ing many action segments. Since for many applications, like
surveillance and robotics, it is crucial to temporally segment
activities in long untrimmed videos, approaches for tempo-
ral action segmentation have received more attention. Early
attempts for temporal action segmentation tried to extend
the success on trimmed videos by combining these models
with sliding windows [5], [6], [7]. These approaches use
temporal windows of different scales to detect and classify
action segments. However, such approaches are expensive
and do not scale for long videos. Other approaches apply a
coarse temporal modeling using Markov models on top of
frame-wise classifiers [8], [9], [10]. While these approaches
achieved good results, they are very slow as they require
solving a maximization problem over very long sequences.

With the success of temporal convolutional networks
(TCNs) as a powerful temporal model for speech synthesis,
many researchers adapt TCN-based models for the temporal
action segmentation task [11], [12], [13]. These models were
more capable in capturing long range dependencies be-
tween the video frames by relying on a large receptive field.
However, these models are limited for a very low temporal
resolution of a few frames per second. Furthermore, since
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Fig. 1: Overview of the multi-stage temporal convolutional
network. Each stage generates an initial prediction that is
refined by the next stage. At each stage, several dilated 1D
convolutions are applied on the activations of the previous
layer. A loss layer is added after each stage.

these approaches rely on temporal pooling layers to increase
the receptive field, many of the fine-grained information
that is necessary for recognition is lost.

To overcome the limitations of the previous approaches,
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we propose a new model that also uses temporal convo-
lutions. In contrast to previous approaches, the proposed
model operates on the full temporal resolution of the videos
and thus achieves better results. Our model consists of mul-
tiple stages where each stage outputs an initial prediction
that is refined by the next one. We call the new architecture
Multi-Stage Temporal Convolutional Network (MS-TCN).
In each stage, we apply a series of dilated 1D convolutions,
which enables the model to have a large temporal receptive
field with less parameters. Figure 1 shows an overview of
the proposed multi-stage model. Furthermore, we employ
a smoothing loss during training which penalizes over-
segmentation errors in the predictions.

A preliminary version of this work introducing MS-TCN
and the smoothing loss has been published in [14]. While
the proposed MS-TCN already achieves good performance,
some of the design choices are sub-optimal. First, while the
receptive field is very large for higher layers in MS-TCN,
lower layers suffer from a small receptive field. Second,
the first stage in MS-TCN generates an initial prediction
and the remaining stages refine this prediction. Despite
the differences between these two tasks, all stages share
the same architecture. To address the first limitation, we
propose a dual dilated layer (DDL) which combines both
large and small receptive fields at each layer. For the second,
we divide the whole architecture into two parts: The first
part is the first stage, which is the prediction generation
stage, and the second part consists of prediction refinement
stages. Then we customize the architecture of each part
separately and do not force all stages to have the same
architecture as in MS-TCN. By incorporating these design
choices on MS-TCN, we propose an improved version of the
model, which we call MS-TCN++. Furthermore, we show
that the parameters of the refinement stages in MS-TCN++
can be shared without compromising the accuracy. This
model achieves superior performance compared to MS-TCN
with much less parameters. Our contribution beyond [14] is
thus three folded:

• We propose a dual dilated layer that combines large
and small receptive fields.

• We optimize the architecture design of MS-TCN by
decoupling the prediction phase and the refinement
phase. We call the new model MS-TCN++, which
achieves superior results compared to MS-TCN.

• We further show that sharing the parameters be-
tween the refinement stages in MS-TCN++ results
in a more compact model without compromising
performance.

Extensive evaluation shows the effectiveness of our mod-
els in capturing long range dependencies between action
classes and producing high quality predictions. Our ap-
proach achieves state-of-the-art results on three challenging
benchmarks for action segmentation: 50Salads [15], Georgia
Tech Egocentric Activities (GTEA) [16], and the Breakfast
dataset [17]. Moreover, the proposed models are view-
agnostic and work well on all the three datasets, which de-
pict videos with third person view, top view and egocentric
videos.

2 RELATED WORK

Temporal action segmentation has received a lot of interest
from the computer vision community. Many approaches
where proposed to localize action segments in videos or
assign action labels to video frames. In earlier approaches,
a sliding window approach is applied with non-maximum
suppression [5], [6]. However, such approaches are compu-
tationally expensive since the model has to be evaluated
at different window scales. Other approaches model actions
based on the change in the state of objects and materials [18]
or based on the interactions between hands and objects [19].
Bhattacharya et al. [20] use a vector time series represen-
tation of videos to model the temporal dynamics of com-
plex actions using methods from linear dynamical systems
theory. The representation is based on the output of pre-
trained concept detectors applied on overlapping temporal
windows. Cheng et al. [21] represent videos as a sequence
of visual words, and model the temporal dependency by
employing a Bayesian non-parametric model of discrete
sequences to jointly classify and segment video sequences.

Despite the success of the previous approaches, their per-
formance was limited as they failed in capturing the context
over long video sequences. To alleviate this problem, many
proposals tried to employ high level temporal modeling
over frame-wise classifiers. Kuehne et al. [8] represent the
frames of a video using Fisher vectors of improved dense
trajectories, and then each action is modeled with a hidden
Markov model (HMM). These HMMs are combined with a
context-free grammar for recognition to determine the most
probable sequence of actions. HMMs are also used in many
other approaches. [22] combine HMMs with a Gaussian
mixture model (GMM) as a frame-wise classifier. However,
since frame-wise classifiers do not capture enough context
to detect action classes, Richard et al. [10] and Kuehne et
al. [23] use a GRU instead of the GMM that is used in [22].
A hidden Markov model is also used in [24] to model
both transitions between states and their durations. Vo and
Bobick [25] use a Bayes network to segment activities. They
represent compositions of actions using a stochastic context-
free grammar with AND-OR operations. [26] propose a
model for temporal action detection that consists of three
components: an action model that maps features extracted
from the video frames into action probabilities, a language
model that describes the probability of actions at sequence
level, and finally a length model that models the length of
different action segments. To get the video segmentation,
they use dynamic programming to find the solution that
maximizes the joint probability of the three models. Singh et
al. [27] use a two-stream network to learn representations of
short video chunks. These representations are then passed
to a bi-directional LSTM to capture dependencies between
different chunks. However, their approach is very slow due
to the sequential prediction. In [28], a three-stream archi-
tecture that operates on spatial, temporal and egocentric
streams is introduced to learn egocentric-specific features.
These features are then classified using a multi-class SVM.

Multi-scale information is important for speech syn-
thesis [29] and image recognition [30]. Inspired by these,
researchers have tried to use similar ideas for the tem-
poral action segmentation task. Lea et al. [11] propose a
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temporal convolutional network for action segmentation
and detection. Their approach follows an encoder-decoder
architecture with a temporal convolution and pooling in the
encoder, and upsampling followed by deconvolution in the
decoder. While using temporal pooling enables the model to
capture long-range dependencies, it might result in a loss of
fine-grained information that is necessary for fine-grained
recognition. Lei and Todorovic [12] build on top of [11]
and use deformable convolutions instead of the normal
convolution and add a residual stream to the encoder-
decoder model. Ding and Xu [13] add lateral connections to
the encoder-decoder TCN [11] and propose a temporal con-
volutional feature pyramid network for predicting frame-
wise action labels. All of the approaches in [11], [12], [13]
operate on downsampled videos with a temporal resolution
of 1-3 frames per second. In contrast to these approaches,
we operate on the full temporal resolution and use dilated
convolutions to capture long-range dependencies. Recently,
Mac et al. [31] propose to learn spatio-temporal features
using deformable convolutions and local consistency con-
straints. On the contrary, in our approach we only focus on
the long-term temporal modeling.

Action detection is a related but a different task. In
this context, the goal is to detect sparse action segments
while most parts of the videos are unlabeled. In this work,
we focus on action segmentation where the videos are
densely annotated. For action detection, several approaches
follow a two stage pipeline. The first stage is to generate
proposals, and then classify and refine the boundaries of
these proposals in the second stage [32], [33], [34], [35], [36],
[37], [38], [39], [40]. Other approaches combine the proposal
generation and classification in a single-stage architecture
which enables end-to-end training [41], [42], [43].

3 TEMPORAL ACTION SEGMENTATION

We introduce a multi-stage temporal convolutional network
(MS-TCN) for the temporal action segmentation task. Then
we introduce a new layer and address the limitations of
MS-TCN to propose an improved model called MS-TCN++.
Given the frames of a video x1:T = (x1, . . . , xT ), our goal
is to infer the class label for each frame c1:T = (c1, . . . , cT ),
where T is the video length. First, we describe the single-
stage approach in Section 3.1, then we discuss the multi-
stage model in Section 3.2. Section 3.3 introduces the dual
dilated layer. In Section 3.4, we analyze the drawbacks of
MS-TCN and introduce the improved model MS-TCN++.
Finally, we describe the proposed loss function in Sec-
tion 3.5.

3.1 Single-Stage TCN

Our single stage model consists of only temporal convolu-
tional layers. We do not use pooling layers, which reduce the
temporal resolution, or fully connected layers, which force
the model to operate on inputs of fixed size and massively
increase the number of parameters. We call this model a
single-stage temporal convolutional network (SS-TCN). The
first layer of a single-stage TCN is a 1 × 1 convolutional
layer, that adjusts the dimension of the input features to
match the number of feature maps in the network. Then, this
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Fig. 2: Overview of the dilated residual layer. At each layer
l, the dilated residual layer uses a convolution with dilated
factor 2l.

layer is followed by several layers of dilated 1D convolution.
Inspired by the wavenet [29] architecture, we use a dilation
factor that is doubled at each layer, i.e. 1, 2, 4, ...., 512. All
these layers have the same number of convolutional filters.
However, instead of the causal convolution that is used
in wavenet, we use acausal convolutions with kernel size
3. Each layer applies a dilated convolution with ReLU
activation to the output of the previous layer. We further use
residual connections to facilitate gradients flow. The set of
operations at each layer can be formally described as follows

Ĥl = ReLU(Wd ∗Hl−1 + bd), (1)

Hl = Hl−1 +W ∗ Ĥl + b, (2)

where Hl is the output of layer l, ∗ denotes the convolution
operator, Wd ∈ R3×D×D are the weights of the dilated
convolution filters with kernel size 3 and D is the number
of convolutional filters, W ∈ R1×D×D are the weights
of a 1 × 1 convolution, and bd, b ∈ RD are bias vectors.
These operations are illustrated in Figure 2. Using dilated
convolution increases the receptive field without the need to
increase the number of parameters by increasing the number
of layers or the kernel size. Since the receptive field grows
exponentially with the number of layers, we can achieve
a very large receptive field with a few layers, which helps
in preventing the model from over-fitting the training data.
The receptive field at each layer is determined by

ReceptiveF ield(l) = 2l+1 − 1, (3)

where l ∈ [1, L] is the layer number. Note that this formula
is only valid for a kernel of size 3. To get the probabilities
for the output class, we apply a 1 × 1 convolution over the
output of the last dilated convolution layer followed by a
softmax activation, i.e.

Yt = Softmax(WhL,t + b), (4)

where Yt contains the class probabilities at time t, hL,t is
the output of the last dilated convolution layer at time t,
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W ∈ RC×D and b ∈ RC are the weights and bias for the
1× 1 convolution layer. C is the number of classes and D is
the number of convolutional filters.

3.2 Multi-Stage TCN
Stacking several predictors sequentially has shown signifi-
cant improvements in many tasks like human pose estima-
tion [44], [45], [46]. The idea of these stacked or multi-stage
architectures is composing several models sequentially such
that each model operates directly on the output of the pre-
vious one. The effect of such composition is an incremental
refinement of the predictions from the previous stages.

Motivated by the success of such architectures, we in-
troduce a multi-stage temporal convolutional network (MS-
TCN) for the temporal action segmentation task. In this
multi-stage model, each stage takes an initial prediction
from the previous stage and refines it. The input of the first
stage are the frame-wise features of the video as follows

Y 0 = x1:T , (5)

Y s = F(Y s−1), (6)

where Y s is the output at stage s and F is the single-
stage TCN discussed in Section 3.1. Using such a multi-
stage architecture helps in providing more context to predict
the class label at each frame. Furthermore, since the output
of each stage is an initial prediction, the network is able
to capture dependencies between action classes and learn
plausible action sequences, which helps in reducing the
over-segmentation errors.

Note that the input to the next stage is just the frame-
wise probabilities without any additional features. We will
show in the experiments how adding features to the input
of the next stage affects the quality of the predictions.

3.3 Dual Dilated Layer
In the dilated convolution layers in MS-TCN, the dilation
factor increases as we increase the number of layers. While
this results in a large receptive field for higher layers, lower
layers still suffer from very low receptive fields. Further-
more, higher layers in MS-TCN apply convolutions over
very distant time steps due to the large dilation factor. To
overcome this problem, we propose a dual dilated layer
(DDL). Instead of having one dilated convolution, the DDL
combines two convolutions with different dilation factor.
The first convolution has a low dilation factor in lower lay-
ers and exponentially increases as we increases the number
of layers. Whereas for the second convolution, we start with
a large dilation factor in lower layers and exponentially
decrease it with increasing the number of layers. The set of
operations at each layer can be formally described as follows

Ĥl,d1 = Wd1 ∗Hl−1 + bd1 , (7)

Ĥl,d2
= Wd2

∗Hl−1 + bd2
, (8)

Ĥl = ReLU([Ĥl,d1
, Ĥl,d2

]), (9)

Hl = Hl−1 +W ∗ Ĥl + b, (10)

where Wd1 ,Wd2 ∈ R3×D×D are the weights of dilated
convolutions with dilation factor 2l and 2L−l respectively,
W ∈ R1×2D×D are the weights of a 1 × 1 convolution,
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Fig. 3: Overview of the dual dilated layer (DDL). At each
layer l, DDL uses two convolutions with dilated factor 2l

and 2L−l, respectively, where L is the number of layers in
the network.

and bd1 , bd2 , b ∈ RD are bias vectors. In (9), Ĥl,d1 and Ĥl,d2

are concatenated. An overview of the dual dilated layer is
illustrated in Figure 3.

While the dual dilated layer combines local and global
context from the input sequence, there are other techniques
in the literature for fusing multi-scale features like feature
pyramid networks (FPN) [47]. While applying FPN for
temporal action segmentation has been successful [13], these
approaches still suffer from a very limited receptive field.
Moreover, the multi-scale features in FPN are obtained
by applying pooling operations which results in a loss of
the fine-grained information that is necessary for temporal
segmentation. On the contrary, DDL combines multi-scale
features and yet preserves the temporal resolution of the
input sequence.

3.4 MS-TCN++
In this section, we introduce MS-TCN++, which utilizes the
proposed dual dilated layer to improve MS-TCN. Similar
to MS-TCN, the first stage in MS-TCN++ is responsible
for generating the initial prediction, whereas the remaining
stages incrementally refine this prediction. For the predic-
tion generation stage, we adapt an SS-TCN with dual dilated
layers (Figure 3) replacing the simple dilated residual layers
(Figure 2) that are originally used in SS-TCN. Using the
DDL enables the prediction generation stage to capture
both local and global features in all layers, which results
in better predictions. As refinement is easier than prediction
generation, we adapt the SS-TCN architecture with dilated
residual layers for the refinement stages. In our experiments,
we show that using DDL only for the first stage performs
best. Figure 4 shows an overview of the proposed MS-
TCN++.

While adding more stages incrementally refines the pre-
dictions, it also drastically increases the number of parame-
ters. Nevertheless, as the refinement stages are sharing the
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Fig. 4: Overview of MS-TCN++. The first stage adapts an SS-
TCN model with dual dilated layers. This stage generates
an initial prediction that is refined incrementally by a set of
Nr refinement stages. For the refinement stages, an SS-TCN
with dilated residual layers is used. A loss layer is added
after each stage.

same role, their parameters can be shared to get a more
compact model. In the experiments, we show that sharing
the parameters between the refinement stages significantly
reduces the number of parameters with only a slight degra-
dation in accuracy.

3.5 Loss Function
As a loss function, we use a combination of a classification
loss and a smoothing loss. For the classification loss, we use
a cross entropy loss

Lcls =
1

T

∑
t

−log(yt,c), (11)

where yt,c is the predicted probability for the ground truth
label c at time t.

While the cross entropy loss already performs well, we
found that the predictions for some of the videos contain
a few over-segmentation errors. To further improve the
quality of the predictions, we use an additional smoothing
loss to reduce such over-segmentation errors. For this loss,
we use a truncated mean squared error over the frame-wise
log-probabilities

LT−MSE =
1

TC

∑
t,c

∆̃2
t,c, (12)

∆̃t,c =

{
∆t,c : ∆t,c ≤ τ
τ : otherwise

, (13)

∆t,c = |log yt,c − log yt−1,c| , (14)

where T is the video length, C is the number of classes, and
yt,c is the probability of class c at time t.

Note that the gradients are only computed with respect
to yt,c, whereas yt−1,c is not considered as a function of
the model’s parameters. This loss is similar to the Kullback-
Leibler (KL) divergence loss where

LKL =
1

T

∑
t,c

yt−1,c(log yt−1,c − log yt,c). (15)

However, we found that the truncated mean squared error
(LT−MSE) (12) reduces the over-segmentation errors more.
We will compare the KL loss and the proposed loss in the
experiments.

The final loss function for a single stage is a combination
of the above mentioned losses

Ls = Lcls + λLT−MSE , (16)

where λ is a model hyper-parameter to determine the con-
tribution of the different losses. Finally to train the complete
model, we minimize the sum of the losses over all stages

L =
∑
s

Ls. (17)

3.6 Implementation Details
For both MS-TCN and MS-TCN++, we use a multi-stage ar-
chitecture with four stages. While all stages are the same for
MS-TCN, the stages in MS-TCN++ consist of one prediction
generation stage and three refinement stages. Each stage in
MS-TCN and the refinement stages in MS-TCN++ contain
ten dilated convolution layers. For the prediction generation
stage in MS-TCN++, we use eleven layers. Dropout is used
after each layer with probability 0.5. We set the number of
filters to 64 in all layers of the model and the filter size is
3. For the loss function, we set τ = 4 and λ = 0.15. In all
experiments, we use Adam optimizer with a learning rate
of 0.0005.

4 EXPERIMENTS

Datasets. We evaluate the proposed models on three chal-
lenging datasets: 50Salads [15], Georgia Tech Egocentric Ac-
tivities (GTEA) [16], and the Breakfast dataset [17]. Table 1
shows a summary of these datasets.

The 50Salads dataset contains 50 videos with 17 action
classes. The videos were recorded from the top view. On
average, each video contains 20 action instances and is 6.4
minutes long. As the name of the dataset indicates, the
videos depict salad preparation activities. These activities
were performed by 25 actors where each actor prepared
two different salads. For evaluation, we use five-fold cross-
validation and report the average as in [15].

The GTEA dataset contains 28 videos corresponding to 7
different activities, like preparing coffee or cheese sandwich,
performed by 4 subjects. This dataset contains egocentric
videos recorded by a camera that is mounted on the actor’s
head. The frames of the videos are annotated with 11 action
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# videos # action classes view description

50Salads 50 17 top-view salad preparation activities
GTEA 28 11 egocentric 7 different activities, like preparing coffee or cheese sandwich
Breakfast 1712 48 third person view breakfast preparation related activities in 18 different kitchens

TABLE 1: Summary of the used datasets in the experiments.

classes including background. On average, each video has
20 action instances. We use cross-validation for evaluation
by leaving one subject out.

The Breakfast dataset is the largest among the three
datasets with 1, 712 third person view videos. The videos
were recorded in 18 different kitchens showing breakfast
preparation related activities. Overall, there are 48 different
actions where each video contains 6 action instances on
average. For evaluation, we use the standard 4 splits as
proposed in [17] and report the average.

For all datasets, we extract I3D [3] features for the video
frames and use these features as input to our model. For the
GTEA and Breakfast datasets we use the temporal video
resolution at 15 fps, while for 50Salads we downsampled
the features from 30 fps to 15 fps to be consistent with the
other datasets.

Evaluation Metrics. For evaluation, we report the frame-
wise accuracy (Acc), segmental edit distance and the seg-
mental F1 score at overlapping thresholds 10%, 25% and
50%, denoted by F1@{10, 25, 50}. The overlapping thresh-
old is determined based on the intersection over union (IoU)
ratio. While the frame-wise accuracy is the most commonly
used metric for action segmentation, long action classes
have a higher impact than short action classes on this metric
and over-segmentation errors have a very low impact. For
that reason, we use the segmental F1 score as a measure of
the quality of the prediction as proposed by [11].

4.1 Effect of the Number of Stages

We start our evaluation by showing the effect of using
a multi-stage architecture (MS-TCN). Table 2 shows the
results of a single-stage model compared to multi-stage
models with different number of stages. As shown in the
table, all of these models achieve a comparable frame-
wise accuracy. Nevertheless, the quality of the predictions
is very different. Looking at the segmental edit distance
and F1 scores of these models, we can see that the single-
stage model produces a lot of over-segmentation errors, as
indicated by the low F1 score. On the other hand, using a
multi-stage architecture reduces these errors and increases
the F1 score. This effect is clearly visible when we use two
or three stages, which gives a huge boost to the accuracy.
Adding the fourth stage still improves the results but not
as significant as the previous stages. However, by adding
the fifth stage, we can see that the performance starts to
degrade. This might be an over-fitting problem as a result
of increasing the number of parameters. The effect of the
multi-stage architecture can also be seen in the qualitative
results shown in Figure 5. Adding more stages results in an
incremental refinement of the predictions. In the rest of the
experiments we use a multi-stage TCN with four stages.

F1@{10,25,50} Edit Acc

SS-TCN 27.0 25.3 21.5 20.5 78.2
MS-TCN (2 stages) 55.5 52.9 47.3 47.9 79.8
MS-TCN (3 stages) 71.5 68.6 61.1 64.0 78.6
MS-TCN (4 stages) 76.3 74.0 64.5 67.9 80.7
MS-TCN (5 stages) 76.4 73.4 63.6 69.2 79.5

TABLE 2: Effect of the number of stages on the 50Salads
dataset.

Stage_5

Stage_4

Stage_3

Stage_2

Stage_1

GT

Fig. 5: Qualitative result from the 50Salads dataset for com-
paring different number of stages.

4.2 Multi-Stage TCN vs. Deeper Single-Stage TCN

In the previous section, we have seen that our multi-stage
architecture is better than a single-stage one. However, that
comparison does not show whether the improvement is
because of the multi-stage architecture or due to the increase
in the number of parameters when adding more stages. For
a fair comparison, we train a single-stage model that has
the same number of parameters as the multi-stage one. As
each stage in our MS-TCN contains 12 layers (ten dilated
convolutional layers, one 1 × 1 convolutional layer and a
softmax layer), we train a single-stage TCN with 48 layers,
which is the number of layers in a MS-TCN with four stages.
For the dilated convolutions, we use similar dilation factors
as in our MS-TCN. I.e. we start with a dilation factor of 1
and double it at every layer up to a factor of 512, and then
we start again from 1. As shown in Table 3, our multi-stage
architecture outperforms its single-stage counterpart with a
large margin of up to 27%. This highlights the impact of
the multi-stage architecture in improving the quality of the
predictions.

F1@{10,25,50} Edit Acc

SS-TCN (48 layers) 49.0 46.4 40.2 40.7 78.0
MS-TCN 76.3 74.0 64.5 67.9 80.7

TABLE 3: Comparing a multi-stage TCN with a deep single-
stage TCN on the 50Salads dataset.
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F1@{10,25,50} Edit Acc

Lcls 71.3 69.7 60.7 64.2 79.9
Lcls + λLKL 71.9 69.3 60.1 64.6 80.2
Lcls + λLT−MSE 76.3 74.0 64.5 67.9 80.7

TABLE 4: Comparing different loss functions on the 50Sal-
ads dataset.

Lcls + λLT−MSE

Lcls + λLKL

Lcls

GT

Fig. 6: Qualitative result from the 50Salads dataset for com-
paring different loss functions.

4.3 Comparing Different Loss Functions

As a loss function, we use a combination of a cross-entropy
loss, which is common practice for classification tasks,
and a truncated mean squared loss over the frame-wise
log-probabilities to ensure smooth predictions. While the
smoothing loss slightly improves the frame-wise accuracy
compared to the cross entropy loss alone, we found that this
loss produces much less over-segmentation errors. Table 4
and Figure 6 show a comparison of these losses. As shown in
Table 4, the proposed loss achieves better F1 and edit scores
with an absolute improvement of up to 5%. This indicates
that our loss produces less over-segmentation errors com-
pared to cross entropy since it forces consecutive frames to
have similar class probabilities, which results in a smoother
output.

Penalizing the difference in log-probabilities is similar
to the Kullback-Leibler (KL) divergence loss, which mea-
sures the difference between two probability distributions.
However, the results show that the proposed loss produces
better results than the KL loss as shown in Table 4 and
Figure 6. The reason behind this is the fact that the KL
divergence loss does not penalize cases where the difference
between the target probability and the predicted probability
is very small. Whereas the proposed loss penalizes small
differences as well. Note that, in contrast to the KL loss, the
proposed loss is symmetric. Figure 7 shows the surface for
both the KL loss and the proposed truncated mean squared
loss for the case of two classes. We also tried a symmetric
version of the KL loss but it performed worse than the KL
loss.

4.4 Impact of λ and τ

The effect of the proposed smoothing loss is controlled by
two hyper-parameters: λ and τ . In this section, we study
the impact of these parameters and see how they affect the
performance of the proposed model.
Impact of λ: In all experiments, we set λ = 0.15. To analyze
the effect of this parameter, we train different models with
different values of λ. As shown in Table 5, the impact of λ
is very small on the performance. Reducing λ to 0.05 still
improves the performance but not as good as the default

Fig. 7: Loss surface for the Kullback-Leibler (KL) divergence
loss (LKL) and the proposed truncated mean squared loss
(LT−MSE) for the case of two classes. yt,c is the predicted
probability for class c and yt−1,c is the target probability
corresponding to that class.

Impact of λ F1@{10,25,50} Edit Acc

MS-TCN (λ = 0.05, τ = 4) 74.1 71.7 62.4 66.6 80.0
MS-TCN (λ = 0.15, τ = 4) 76.3 74.0 64.5 67.9 80.7
MS-TCN (λ = 0.25, τ = 4) 74.7 72.4 63.7 68.1 78.9

Impact of τ F1@{10,25,50} Edit Acc

MS-TCN (λ = 0.15, τ = 3) 74.2 72.1 62.2 67.1 79.4
MS-TCN (λ = 0.15, τ = 4) 76.3 74.0 64.5 67.9 80.7
MS-TCN (λ = 0.15, τ = 5) 66.6 63.7 54.7 60.0 74.0

TABLE 5: Impact of λ and τ on the 50Salads dataset.

value of λ = 0.15. Increasing its value to λ = 0.25 also
causes a degradation in performance. This drop in perfor-
mance is due to the fact that the smoothing loss heavily
penalizes changes in frame-wise labels, which affects the
detected boundaries between action segments.
Impact of τ : This hyper-parameter defines the threshold to
truncate the smoothing loss. Our default value is τ = 4.
While reducing the value to τ = 3 still gives an improve-
ment over the cross entropy baseline, setting τ = 5 results
in a huge drop in performance. This is mainly because when
τ is too high, the smoothing loss penalizes cases where the
model is very confident that the consecutive frames belong
to two different classes, which indeed reduces the capability
of the model in detecting the true boundaries between action
segments.

4.5 Effect of Passing Features to Higher Stages

In the proposed multi-stage TCN, the input to higher stages
are the frame-wise probabilities only. However, in the multi-
stage architectures that are used for human pose estimation,

F1@{10,25,50} Edit Acc

Probabilities and features 56.2 53.7 45.8 47.6 76.8
Probabilities only 76.3 74.0 64.5 67.9 80.7

TABLE 6: Effect of passing features to higher stages on the
50Salads dataset.
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Fig. 8: Qualitative results for two videos from the 50Salads
dataset showing the effect of passing features to higher
stages.

additional features are usually concatenated to the output
heat-maps of the previous stage. In this experiment, we
therefore analyze the effect of combining additional features
to the input probabilities of higher stages. To this end, we
trained two multi-stage TCNs: one only with the predicted
frame-wise probabilities as input to the next stage, and, for
the second model, we concatenated the output of the last
dilated convolutional layer in each stage to the input proba-
bilities of the next stage. As shown in Table 6, concatenating
the features to the input probabilities results in a huge drop
of the F1 score and the segmental edit distance (around
20%). We argue that the reason behind this degradation
in performance is that a lot of action classes share similar
appearance and motion. By adding the features of such
classes at each stage, the model is confused and produces
small separated falsely detected action segments that cor-
respond to an over-segmentation effect. Passing only the
probabilities forces the model to focus on the context of
neighboring labels, which are explicitly represented by the
probabilities. This effect can also be seen in the qualitative
results shown in Figure 8.

4.6 MS-TCN++ vs. MS-TCN

In this section, we compare the two multi-stage architec-
tures: MS-TCN++ and MS-TCN. In contrast to MS-TCN,
MS-TCN++ uses the dual dilated layer (DDL) in the first
stage. Table 7 shows the results of both architectures on
the 50Salads dataset. As shown in the table, MS-TCN++
outperforms MS-TCN with a large margin of up to 6.4%.
This emphasizes the importance of combining both local
and global representations in the prediction generation stage
by utilizing the DDL in MS-TCN++. To study the impact of
using DDL in all stages, we also train an MS-TCN where we
use the DDL in all stages. As shown in Table 7, MS-TCN++
outperforms MS-TCN with DDL in all stages. This indicates
that decoupling the design of the refinement stages and
the prediction generation stage is crucial. While utilizing
the global context by the DDL is crucial for the prediction
generation stage, the refinement stages focus more on the
local context. By adding DDL to the refinement stages, the
accuracy even drops due to overfitting. Note that using DDL
in all stages outperforms MS-TCN with up to 2.8%. This
further highlights the gains of the DDL. The impact of DDL
is also visible in the qualitative results shown in Figure 9.

MS−TCN with DDL

MS−TCN w/o DDL

GT

MS−TCN with DDL

MS−TCN w/o DDL

GT

Fig. 9: Qualitative results for two videos from the 50Salads
dataset showing the impact of the dual dilated layer (DDL).

F1@{10,25,50} Edit Acc

MS-TCN 76.3 74.0 64.5 67.9 80.7
MS-TCN with DDL 77.3 75.0 67.3 69.8 82.4
MS-TCN++ 80.7 78.5 70.1 74.3 83.7

TABLE 7: MS-TCN++ vs. MS-TCN vs. MS-TCN with DDL
on the 50Salads dataset.

4.7 Impact of the Number of Layers

For MS-TCN and the refinement stages in MS-TCN++, we
fix the number of layers in each stage to 10 layers. Whereas
for the prediction generation stage in MS-TCN++, we set
the number of layers to 11. In this section, we study the
impact of these parameters. Table 8 shows the impact of the
number of layers (L) for the MS-TCN stages on the 50Salads
dataset. Increasing L form 8 to 10 significantly improves
the performance. This is mainly due to the increase in
the receptive field. Using more than 10 layers (L = 11,
L = 12) does not improve the frame-wise accuracy but
slightly increases the F1 scores. We also tried to change the
number of layers only in the refinement stages in MS-TCN.
As shown in Table 9, this does not have a significant impact
and using 10 layers achieves the best performance. Also for
the refinement stages in MS-TCN++, the number of layers
Lr does not have a significant impact on the performance.
To be consistent with [14], we set Lr = 10 which achieves
a reasonable trade-off on performance with respect to all
evaluation metrics as shown in Table 9. A similar behavior
can be observed in Table 10 for the number of layers Lg in
the prediction generation stage with Lg = 11 achieving the
best performance. Generally speaking, the number of layers
in each stage has more impact in MS-TCN compared to MS-
TCN++. As the main difference between these two models
is the dual dilation layer (DDL) that is used in MS-TCN++,
this indicates that the DDL can better capture both local and
global features to generate much better predictions.

4.8 Impact of the Large Receptive Field on Short
Videos

To study the impact of the large receptive field on short
videos, we evaluate MS-TCN and MS-TCN++ on three
groups of videos based on their durations. For this eval-
uation, we use the GTEA dataset since it contains shorter
videos compared to the other datasets. As shown in Table 11,
both MS-TCN and MS-TCN++ perform well on both short
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F1@{10,25,50} Edit Acc

L = 6 53.2 48.3 39.0 46.2 63.7
L = 8 66.4 63.7 52.8 60.1 73.9
L = 10 76.3 74.0 64.5 67.9 80.7
L = 11 76.7 74.2 65.5 69.7 80.4
L = 12 77.8 75.2 66.9 69.6 80.5

TABLE 8: Effect of the number of layers (L) in each stage of
MS-TCN on the 50Salads dataset.

F1@{10,25,50} Edit Acc

Lr = 6 74.3 71.5 62.8 66.0 78.6
Lr = 8 75.4 72.4 64.3 68.0 79.5

MS-TCN Lr = 10 76.3 74.0 64.5 67.9 80.7
Lr = 11 75.0 72.0 63.5 67.6 80.3
Lr = 12 74.1 71.2 62.3 65.7 79.1

Lr = 6 78.2 75.6 67.7 69.6 82.3
Lr = 8 80.9 78.2 70.2 73.4 82.9

MS-TCN++ Lr = 10 80.7 78.5 70.1 74.3 83.7
Lr = 11 80.5 78.3 70.0 72.6 83.4
Lr = 12 79.4 76.9 69.2 71.3 83.5

TABLE 9: Effect of the number of layers (Lr) in each refine-
ment stage on the 50Salads dataset.

and long videos. Nevertheless, the performance is slightly
worse on longer videos due to the limited receptive field.
The improvements of MS-TCN++ over MS-TCN are also
noticeable for both short and long videos.

4.9 Effect of the Number of Refinement Stages
We set the number of refinement stages Nr in MS-TCN++
to 3 stages, which results in a model with 4 stages in total.
Table 12 shows the impact of the refinement stages on the
50Salads dataset. Using only the prediction generation stage
(Nr = 0) results in a relative low performance but it is

F1@{10,25,50} Edit Acc

Lg = 6 74.3 71.6 63.5 67.8 78.5
Lg = 8 77.4 75.3 67.8 70.3 80.8
Lg = 10 79.8 77.9 71.0 72.5 83.1
Lg = 11 80.7 78.5 70.1 74.3 83.7
Lg = 12 78.9 76.6 67.6 70.8 83.2

TABLE 10: Effect of the number of layers (Lg) in the pre-
diction generation stage for MS-TCN++ on the 50Salads
dataset.

Duration F1@{10,25,50} Edit Acc

< 1 min 89.6 87.9 77.0 82.5 76.6
MS-TCN 1− 1.5 min 85.9 84.3 71.9 80.7 76.4

≥ 1.5 min 81.2 76.5 58.4 71.8 75.9

< 1 min 90.4 90.4 80.8 84.4 79.3
MS-TCN++ 1− 1.5 min 88.7 85.8 75.1 83.6 79.3

≥ 1.5 min 80.8 78.8 63.3 76.1 77.2

TABLE 11: Evaluation of three groups of videos from the
GTEA dataset based on their durations.

Nr F1@{10,25,50} Edit Acc

MS-TCN++ 0 51.0 48.4 40.7 40.4 80.7
MS-TCN++ 1 70.7 68.2 59.7 62.0 82.4
MS-TCN++ 2 77.8 75.1 66.9 69.4 82.5
MS-TCN++ 3 80.7 78.5 70.1 74.3 83.7
MS-TCN++ 4 80.6 78.7 70.1 73.1 82.4

TABLE 12: Impact of the number of refinement stages on the
50Salads dataset.

F1@{10,25,50} Edit Acc # param.(m)

MS-TCN 76.3 74.0 64.5 67.9 80.7 0.80
MS-TCN++ 80.7 78.5 70.1 74.3 83.7 0.99
MS-TCN++(sh) 78.7 76.6 68.3 70.7 82.2 0.66

TABLE 13: Impact of sharing parameters for the refinement
stages on the 50Salads dataset.

much better than a single stage TCN (Table 2). Adding more
refinement stages improves the performance incrementally.
Nevertheless, adding more than 3 refinement stages does
not provide additional improvements.

4.10 Impact of Parameters Sharing
MS-TCN++ consists of a prediction generation stage and 3
refinement stages. Although adding more stages results in a
better performance, it also increases the number of param-
eters. As the refinement stages share in principle the same
task, it is hence intuitive that they can share parameters. Ta-
ble 13 shows the impact of sharing parameters between the
refinement stages. Sharing parameters significantly reduces
the number of parameters with only a slight decrease in
performance. For an MS-TCN++ with 3 refinement stages,
sharing parameters reduces the total number of parameters
to roughly 66% of the total parameters in the original model.
As shown in the table, MS-TCN++ with shared parameters
outperforms MS-TCN with a margin of up to 3.8% despite
of having less parameters.

4.11 Impact of Temporal Resolution
Previous temporal models operate on a low temporal resolu-
tion of 1-3 frames per second [11], [12], [13]. On the contrary,
our approach is able to handle a higher resolution of 15 fps.
In this experiment, we evaluate MS-TCN and MS-TCN++,
with and without parameter sharing, for a low temporal res-
olution of 1 fps. As shown in Table 14, both models are able
to handle both low and high temporal resolutions. While
reducing the temporal resolution for MS-TCN results in a
better edit distance and segmental F1 score, using a higher
resolution gives better frame-wise accuracy. Operating on
a low temporal resolution makes MS-TCN less prone to
the over-segmentation problem, which is reflected in the
better edit and F1 scores. Due to the dual dilated layers,
MS-TCN++ benefits more from a higher temporal resolution
and the impact of reducing the temporal resolution for MS-
TCN++ is noticeable for all evaluation metrics. Note that
even when we share the parameters of the refinement stages
in MS-TCN++, using a higher temporal resolution results in
a better performance.
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Fig. 10: Qualitative results for the temporal action segmentation task on (a)(b) 50Salads, (c)(d) GTEA, and (e)(f) Breakfast
dataset.

F1@{10,25,50} Edit Acc

MS-TCN (1 fps) 77.8 74.9 64.0 70.7 78.6
MS-TCN (15 fps) 76.3 74.0 64.5 67.9 80.7

MS-TCN++ (1 fps) 80.4 78.7 68.6 73.3 81.1
MS-TCN++ (15 fps) 80.7 78.5 70.1 74.3 83.7

MS-TCN++(sh) (1 fps) 77.0 73.8 64.0 69.1 80.8
MS-TCN++(sh) (15 fps) 78.7 76.6 68.3 70.7 82.2

TABLE 14: Impact of temporal resolution on the 50Salads
dataset.

4.12 Impact of Fine-tuning the Features

In our experiments, we use the I3D features without fine-
tuning. Table 15 shows the effect of fine-tuning on the
GTEA dataset. Both of our multi-stage architectures, MS-
TCN and MS-TCN++, significantly outperform the single
stage architecture - with and without fine-tuning. This also
holds when the parameters of the refinement stages in MS-
TCN++ are shared. Fine-tuning improves the results, but the
effect of fine-tuning for action segmentation is lower than
for action recognition. This is expected since the temporal

model is by far more important for segmentation than for
recognition.

Note that without fine-tuning, sharing parameters
achieves better results on GTEA. This is mainly due to
the reduced number of parameters, which prevents the
model from over-fitting the training data, especially for
small datasets like GTEA.

F1@{10,25,50} Edit Acc

w/o FT SS-TCN 62.8 60.0 48.1 55.0 73.3
MS-TCN 85.8 83.4 69.8 79.0 76.3
MS-TCN++ 87.0 85.2 73.5 82.0 78.7
MS-TCN++(sh) 87.8 86.2 74.4 82.6 78.9

with FT SS-TCN 69.5 64.9 55.8 61.1 75.3
MS-TCN 87.5 85.4 74.6 81.4 79.2
MS-TCN++ 88.8 85.7 76.0 83.5 80.1
MS-TCN++(sh) 88.2 86.2 75.9 83.0 79.7

TABLE 15: Effect of fine-tuning on the GTEA dataset.

4.13 Comparison with the State-of-the-Art
In this section, we compare the proposed models to the
state-of-the-art methods on three datasets: 50Salads, Geor-
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50Salads F1@{10,25,50} Edit Acc

Spatial CNN [9] 32.3 27.1 18.9 24.8 54.9
IDT+LM [26] 44.4 38.9 27.8 45.8 48.7
Bi-LSTM [27] 62.6 58.3 47.0 55.6 55.7
Dilated TCN [11] 52.2 47.6 37.4 43.1 59.3
ST-CNN [9] 55.9 49.6 37.1 45.9 59.4
TUnet [48] 59.3 55.6 44.8 50.6 60.6
ED-TCN [11] 68.0 63.9 52.6 52.6 64.7
TResNet [49] 69.2 65.0 54.4 60.5 66.0
TRN [12] 70.2 65.4 56.3 63.7 66.9
TDRN+UNet [12] 69.6 65.0 53.6 62.2 66.1
TDRN [12] 72.9 68.5 57.2 66.0 68.1
LCDC+ED-TCN [31] 73.8 - - 66.9 72.1

MS-TCN [14] 76.3 74.0 64.5 67.9 80.7
MS-TCN++(sh) 78.7 76.6 68.3 70.7 82.2
MS-TCN++ 80.7 78.5 70.1 74.3 83.7

GTEA F1@{10,25,50} Edit Acc

Spatial CNN [9] 41.8 36.0 25.1 - 54.1
Bi-LSTM [27] 66.5 59.0 43.6 - 55.5
Dilated TCN [11] 58.8 52.2 42.2 - 58.3
ST-CNN [9] 58.7 54.4 41.9 - 60.6
TUnet [48] 67.1 63.7 51.9 60.3 59.9
ED-TCN [11] 72.2 69.3 56.0 - 64.0
LCDC+ED-TCN [31] 75.4 - - 72.8 65.3
TResNet [49] 74.1 69.9 57.6 64.4 65.8
TRN [12] 77.4 71.3 59.1 72.2 67.8
TDRN+UNet [12] 78.1 73.8 62.2 73.7 69.3
TDRN [12] 79.2 74.4 62.7 74.1 70.1

MS-TCN [14] 87.5 85.4 74.6 81.4 79.2
MS-TCN++(sh) 88.2 86.2 75.9 83.0 79.7
MS-TCN++ 88.8 85.7 76.0 83.5 80.1

Breakfast F1@{10,25,50} Edit Acc

ED-TCN [11]* - - - - 43.3
HTK [22] - - - - 50.7
TCFPN [13] - - - - 52.0
HTK(64) [8] - - - - 56.3
GRU [10]* - - - - 60.6
GRU+length prior [23] - - - - 61.3

MS-TCN (IDT) [14] 58.2 52.9 40.8 61.4 65.1
MS-TCN (I3D) [14] 52.6 48.1 37.9 61.7 66.3
MS-TCN++(I3D) (sh) 63.3 57.7 44.5 64.9 67.3
MS-TCN++ (I3D) 64.1 58.6 45.9 65.6 67.6

TABLE 16: Comparison with the state-of-the-art on 50Sal-
ads, GTEA, and the Breakfast dataset. (* obtained from [13]).

gia Tech Egocentric Activities (GTEA), and the Breakfast
datasets. The results are presented in Table 16. As shown
in the table, our models outperform the state-of-the-art
methods on the three datasets and with respect to three
evaluation metrics: F1 score, segmental edit distance, and
frame-wise accuracy (Acc) with a large margin (up to 11.6%
for the frame-wise accuracy on the 50Salads dataset). Qual-
itative results on the three datasets are shown in Figure 10.
Note that all the reported results are obtained using the I3D
features. To analyze the effect of using a different type of
features, we evaluated MS-TCN on the Breakfast dataset
using the improved dense trajectories (IDT) features, which
are the commonly used features for the Breakfast dataset. As
shown in Table 16, the impact of the features is very small.
While the frame-wise accuracy and edit distance are slightly

better using the I3D features, the model achieves a better F1
score when using the IDT features compared to I3D. This
is mainly because I3D features encode both motion and
appearance, whereas the IDT features encode only motion.
For datasets like Breakfast, using appearance information
does not help the performance since the appearance does
not give a strong evidence about the action that is carried
out. This can be seen in the qualitative results shown in
Figure 10. The video frames share a very similar appearance.
Additional appearance features therefore do not help in
recognizing the activity. As shown in Table 16, sharing
the parameters of the refinement stages achieves similar
performance to MS-TCN++, but it requires about 66% less
parameters as reported in Table 13.

As our approaches do not use any recurrent layers, they
are very fast both during training and testing. Training MS-
TCN++ for 50 epochs takes only 10 minutes on the 50Salads
dataset compared to 35 minutes for training a single cell of
a Bi-LSTM with a 64-dimensional hidden state on a single
GTX 1080 Ti GPU. This is due to the sequential prediction
of the LSTM, where the activations at any time step depend
on the activations from the previous steps. For the MS-TCN
and MS-TCN++, activations at all time steps are computed
in parallel.

5 CONCLUSION

We presented two multi-stage architectures for the temporal
action segmentation task. While the first stage generates an
initial prediction, this prediction is iteratively refined by the
higher stages. Instead of the commonly used temporal pool-
ing, we used dilated convolutions to increase the temporal
receptive field. The experimental evaluation demonstrated
the capability of our architecture in capturing temporal
dependencies between action classes and reducing over-
segmentation errors. We further introduced a smoothing
loss that gives an additional improvement of the predictions
quality. We also introduced a dual dilated layer that captures
both local and global features, which results in better perfor-
mance. Moreover, we showed that sharing the parameters in
the refinement stages results in a more efficient model with a
slight degradation in performance. Our models outperform
the state-of-the-art methods on three challenging datasets
recorded from different views with a large margin. Since
our model is fully convolutional, it is very efficient and fast
both during training and testing.
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