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MiniSeg: An Extremely Minimum Network based
on Lightweight Multiscale Learning for Efficient

COVID-19 Segmentation
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Abstract—The rapid spread of the new pandemic, i.e., COVID-
19, has severely threatened global health. Deep-learning-based
computer-aided screening, e.g., COVID-19 infected area seg-
mentation from CT image, has attracted much attention by
serving as an adjunct to increase the accuracy of COVID-19
screening and clinical diagnosis. Although lesion segmentation
is a hot topic, traditional deep learning methods are usually
data-hungry with millions of parameters, easy to overfit under
limited available COVID-19 training data. On the other hand, fast
training/testing and low computational cost are also necessary
for quick deployment and development of COVID-19 screening
systems, but traditional methods are usually computationally in-
tensive. To address the above two problems, we propose MiniSeg,
a lightweight model for efficient COVID-19 segmentation from
CT images. Our efforts start with the design of an Attentive
Hierarchical Spatial Pyramid (AHSP) module for lightweight,
efficient, effective multiscale learning that is essential for image
segmentation. Then, we build a two-path encoder for deep
feature extraction, where one path uses AHSP modules for
learning multiscale contextual features and the other is a shallow
convolutional path for capturing fine details. The two paths
interact with each other for learning effective representations.
Based on the extracted features, a simple decoder is added for
COVID-19 segmentation. For comparing MiniSeg to previous
methods, we build a comprehensive COVID-19 segmentation
benchmark. Extensive experiments demonstrate that the pro-
posed MiniSeg achieves better accuracy because its only 83K
parameters make it less prone to overfitting. Its high efficiency
also makes it easy to deploy and develop. The code has released
at https://github.com/yun-liu/MiniSeg.

Index Terms—COVID-19 segmentation, lightweight networks,
computer-aided COVID-19 screening, lesion segmentation.

I. INTRODUCTION

AS one of the most severe pandemics in human history,
coronavirus disease 2019 (COVID-19) have caused seri-

ous damage to the global medical system, education, economy,
and society. In order to control the spread of COVID-19,
almost all countries have formulated various policies, i.e., clos-
ing schools and factories, requiring people to wear masks
and get the COVID-19 vaccination [1]. Moreover, lots of
recent studies aim at developing the artificial intelligence based
models to predict and control the casualties of COVID-19 [1]–
[4]. However, due to the special characteristics of COVID-
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19, including rapid spread speed, high infectious, and strong
insidiousness during the early stage, COVID-19 still threatens
global health with thousands of newly infected patients every
day. Hence, effective screening of infected patients is of
high importance to the fight against COVID-19. The gold
standard for COVID-19 diagnosis is the tried-and-true Reverse
Transcription Polymerase Chain Reaction (RT-PCR) testing
[5]. Unfortunately, the sensitivity of RT-PCR testing is not high
enough to prevent the spread of COVID-19 [6]–[11]. Thus, the
radiological image, e.g., X-ray, computed tomography (CT),
and ultrasound, can be used as a complementary tool for RT-
PCR testing to improve screening sensitivity [6]–[8], [11]–
[13]. Besides, radiological image analysis is necessary for
clinical monitoring of disease severity [14]. However, radi-
ological image examination needs expert radiologists, but we
severely lack experienced radiologists during this pandemic.
Therefore, computer-aided systems are expected for automatic
radiological image interpretation.

When it comes to computer-aided COVID-19 screening,
deep-learning-based technology is a good choice due to its
uncountable successful stories in diagnosing, detecting or seg-
menting the infected areas from the radiological image [15]–
[22]. For example, some works [23], [24] construct COVID-19
diagnosis systems using deep neural networks, which classify
the CT or X-ray images into the categories such as normal,
pneumonia, and COVID-19. However, their COVID-19 diag-
nosis can not accurately locate and segment the exact infected
areas of COVID-19. In this paper, we aim at the COVID-19
segmentation which can provide more useful information for
COVID-19 diagnosis. In fact, lots of recent studies focus on
improving the performance of COVID-19 segmentation based
on deep learning technology. For example, Fan et al. [25] pro-
posed a novel COVID-19 lung infection segmentation network
(Inf-Net) to automatically identify infected regions from CT
images. Chen et al. [26] introduced a residual attention U-
Net for automated three-class segmentation of COVID-19 CT
images, including ground class opacification, consolidation,
and pleural effusion. Amyar et al. [27] presented a multitask
deep learning model to jointly identify COVID-19 patient and
segment COVID-19 infected areas from CT images. They
trained the neural network with three tasks, i.e., reconstruction,
classification, and segmentation, which were jointly performed
with different datasets.

However, directly applying traditional deep learning models
for COVID-19 segmentation is suboptimal. On the one hand,
these models usually have millions of parameters and thus re-
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quire a large amount of labeled data for training. The problem
is that the publicly available COVID-19 segmentation data are
limited and thus easy to cause overfitting for traditional data-
hungry models [8]. To overcome the lack of labeled data,
Fan et al. [25] further presented a semi-supervised segmen-
tation framework based on a randomly selected propagation
strategy, while the semi-supervised segmentation framework
could not achieve sufficiently robust performance. On the
other hand, these traditional deep learning methods, especially
the ones for image segmentation, are usually computationally
intensive. Considering the current severe pandemic situation,
fast training/testing and low computational load are essential
for quick deployment and development of computer-aided
COVID-19 screening systems. Although Paluru et al. [11]
tried to introduce a lightweight network for segmentation of
anomalies in COVID-19 CT images, the efficiency was not
enough to cope with the current COVID-19 situation.

It is a widely accepted concept that overfitting is easier
to happen when a model has more parameters and less
training data. It is also widely accepted that the overfitting
can negatively impact the performance of the methods. To
solve the above problems of COVID-19 segmentation, we
observe that lightweight networks are not only uneasy to
overfit owing to their small number of parameters but also
likely to be efficient, making them suitable for computer-aided
COVID-19 screening systems. Therefore, we think lightweight
COVID-19 segmentation should be the technical solution of
this paper. The key is to achieve accurate segmentation under
the constraints of the number of network parameters and
high efficiency. Although replacing the vanilla convolution
with the combination of the depthwise separable convolution
(DSConv) and pointwise convolution [28], [29] can reduce the
number of network parameters, the accuracy usually decreases
as the network shrinks [28]–[32]. To achieve a good trade-off
between efficacy and efficiency, we observe that the accuracy
of image segmentation can be improved with effective mul-
tiscale learning, which has significantly pushed forward the

state of the arts of segmentation [33]–[41]. Hence, we resort
to multiscale learning to ensure the segmentation accuracy of
lightweight networks.

With the above analyses, our effort starts with the design
of an Attentive Hierarchical Spatial Pyramid (AHSP) module
for lightweight, efficient, effective multiscale learning. AHSP
first builds a spatial pyramid of dilated depthwise separa-
ble convolutions and feature pooling for learning multiscale
semantic features. Then, the learned multiscale features are
fused hierarchically to enhance the capacity of multiscale
representation. Finally, the multiscale features are merged
under the guidance of the attention mechanism, which learns to
highlight essential information and filter out noisy information
in radiography images. With the AHSP module incorporated,
we propose an extremely minimum network, namely MiniSeg,
for efficient segmentation of COVID-19 infected areas in chest
CT slices. MiniSeg consists of a two-path encoder for deep
feature extraction and a simple decoder for infected area
segmentation. For the two-path encoder, one path uses AHSP
modules for learning multiscale contextual information, and
the other path is a shallow convolutional path for capturing
fine details. The two paths interact with each other for learning
effective, complementary feature representations. The block
diagram of this system is shown in Fig. 1.

The proposed MiniSeg only has 83K parameters, two or-
ders of magnitude less than traditional image segmentation
methods, so that current limited COVID-19 data can be
enough for training MiniSeg. At last, we build a compre-
hensive COVID-19 segmentation benchmark, including the
well-known methods for both medical image segmentation
and semantic image segmentation, to compare MiniSeg with
previous methods. Compared to the preliminary version [42],
this paper provides more details, discussion, and experiments
to make it clearer and more convincing. Extensive experiments
demonstrate that MiniSeg performs favorably against previous
state-of-the-art segmentation methods with high efficiency.

In summary, our contributions are threefold:
• We propose an Attentive Hierarchical Spatial Pyramid

(AHSP) module for lightweight, efficient, effective mul-
tiscale learning that is essential for image segmentation.

• With AHSP incorporated, we present an extremely
minimum network, MiniSeg, for accurate and efficient
COVID-19 segmentation with limited training data.

• For an extensive comparison of MiniSeg with previous
state-of-the-art segmentation methods, we build a com-
prehensive COVID-19 segmentation benchmark.

II. RELATED WORK

In this section, we briefly review recent development in
image segmentation and lightweight network design. We also
discuss some recent studies for computer-aided COVID-19
screening and current public COVID-19 imaging datasets.

A. Image Segmentation

Image segmentation is a hot topic due to its wide range
of applications. Since the invention of fully convolutional
networks (FCNs) [54], FCN-based methods have dominated
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TABLE I
A SUMMARY OF PUBLIC COVID-19 IMAGING DATASETS.

#Num Dataset Modality #Total/#COVID #Patients Classification Segmentation
1 COVID-19 Image Data Collection [43] X-ray 542/434 262 COVID/Others 7
2 COVID-CT-Dataset [44] CT slice 912/349 216 COVID/Not 7
3 SIRM COVID-19 Database [45] X-ray & CT slice 384/384 71 COVID 7
4 BIMCV COVID-19+ [46] X-ray & CT slice 5381/2428 1311 COVID/Not/Others 7
5 COVID-19 Radiography Database [47] X-ray 21165/3616 - COVID/Not/Others 7
6 Lung Ultrasound (POCUS) Dataset [48] Ultrasound image 1103/654 64 COVID/Not/Others 7
7 SARS-CoV-2 CT-scan Dataset [49] CT slice 2482/1252 - COVID/Not 7
8 COVID-19 X-rays [50] X-ray 1442/224 - COVID/Not/Others 7
9 COVID-19 CT Segmentation Dataset [51] CT slice 100/100 ∼60 COVID 4

10 COVID-19 CT Segmentation Dataset [51] CT slice 829/373 9 COVID 4
11 COVID-19 CT Lung and Infection Segmentation Dataset [52] CT slice 1844/1844 20 COVID 4
12 MosMedData [53] CT slice 785/785 1110 COVID/Not 4

* “#Total” and “#COVID” denote the numbers of all or COVID-19 infected X-rays/CT slices, respectively. “#Patients” indicates the number of patients.

this field. Multiscale learning plays an essential role in im-
age segmentation because objects in images usually exhibit
very large scale variations. Hence, most current state-of-
the-art methods aim at designing FCNs to learn effective
multiscale representations from input images. In this direction,
a popular way is to aggregate multiscale deep features from
multi-level network layers for final dense prediction. For
example, Ronneberger et al. [55] proposed the well-known
U-Net that is actually an encoder-decoder network for fusing
deep features from the top to bottom layers. U-Net++ [56]
improves U-Net by introducing a series of nested, dense skip
connections between the encoder and decoder sub-networks.
Attention U-Net [57] improves U-Net by using the attention
mechanism to learn to focus on target structures. DeconvNet
[58] and SegNet [59] also make careful designs to improve
the U-Net architecture. Moreover, some studies also try to
extract multiscale features directly. For example, DeepLab [33]
and its variants [34]–[36] design ASPP modules using dilated
convolutions with different dilation rates to learn multiscale
features. Based on ASPP, DenseASPP [36] connects a set
of dilated convolutional layers densely, such that it generates
multiscale features that cover a larger scale range densely.

Besides the multiscale learning, some studies focus on
exploiting the global context information through pyramid
pooling [37], context encoding [60], or non-local operations
[61], [62]. Moreover, DFN [41] introduces a smooth network
to handle the intra-class inconsistency problem and a border
network to make the bilateral features of boundary distinguish-
able. Wu et al. [63] tried to find a good compromise between
network depth and width to improve segmentation accuracy.
The above models aim at improving segmentation accuracy
without considering the model size and inference speed, so
they are suboptimal for COVID-19 segmentation that only
has limited training data and requires high efficiency. In the
experiment section, we will show that the limited COVID-19
training data cannot optimize these large models well.

B. Lightweight Networks

Lightweight networks aim at reducing the parameters and
computational complexity of deep networks. Convolution fac-
torization is an intuitive way towards this goal. Specifically,
many well-known network architectures decompose the stan-

dard convolution into multiple steps to reduce the computa-
tional complexity, including Flattened Model [64], Inception
networks [65], Xception [28], ResNeXt [66], MobileNets [29],
[30], and ShuffleNets [31], [32]. Among them, Xception [28]
and MobileNets [29], [30] factorize a convolution into a point-
wise convolution and a depthwise separable convolution. The
pointwise convolution is actually a 1×1 convolution, which is
used for interaction among channels. The depthwise separable
convolution is a grouped convolution with the number of
groups equaling to the number of output channels, so that it
can process each feature channel separably. ShuffleNets [31],
[32] further factorize a pointwise convolution into a channel
shuffle operation and a grouped pointwise convolution for
reducing the parameters and complexity. There are also some
studies focusing on efficient semantic segmentation network
design [38], [39], [67]–[69]. ESPNet [38] decomposes the
standard convolution into a pointwise convolution and a spa-
tial pyramid of dilated convolutions. ESPNetv2 [39] extends
ESPNet [38] using grouped pointwise and dilated DSConv.
Considering COVID-19 segmentation, our proposed MiniSeg
should have a small number of parameters for training with
limited data. Our observation of the essential role of multiscale
learning in image segmentation helps MiniSeg achieve higher
accuracy while being efficient.

Another way to build efficient networks is network com-
pression. Previous studies have adopted various techniques,
such as shrinking [70], parameter quantization [71], pruning
[72], and hashing [73], to compress networks. Some research
[74] also quantizes the network weights into low bits to reduce
the model size and computational complexity. Moreover, some
sparse methods are invented to reduce the redundancy of deep
networks [75]–[77]. For example, Bagherinezhad et al. [75]
encoded convolutions by a few lookups to a dictionary that
is trained to cover the space of network weights. Liu et
al. [76] proposed a sparse decomposition method, and Wen
et al. [77] presented a structured sparsity learning method
to regularize the network structures. However, these methods
have to train deep networks before their compression. In this
paper, we must avoid the training of large networks owing to
the shortage of COVID-19 data, as discussed above. Therefore,
these methods are orthogonal to our goal because they aim
at compressing pretrained large networks rather than directly
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train a lightweight one.

C. Computer-aided COVID-19 Screening

Computer-aided COVID-19 screening has attracted much
attention to serve as a supplementary tool for RT-PCR testing
to improve screening sensitivity [6]–[13], [16], [17]. Some
studies [8]–[10], [15], [78]–[83] design deep neural networks
to classify chest X-rays or CT slices for computer-aided
COVID-19 screening. In this paper, we focus on segment-
ing COVID-19 infected areas from chest CT slices because
segmentation can provide more useful information than image
classification. Fan et al. [25] proposed a segmentation model
for COVID-19 infected area segmentation from CT slices.
However, their method falls into the same category as previous
segmentation methods, i.e., with a large model size, and is thus
suboptimal.

COVID-19 imaging datasets are the basis for computer-
aided COVID-19 screening. Some public datasets have been
introduced such as COVID-19 Image Data Collection [43],
COVID-CT-Dataset [44], SIRM COVID-19 Database [45],
BIMCV COVID-19+ [46], COVID-19 Radiography Database
[47], Lung Ultrasound (POCUS) Dataset [48], SARS-CoV-
2 CT-scan Dataset [49], COVID-19 X-rays [50], COVID-
19 CT Segmentation Dataset [51], COVID-19 CT Lung and
Infection Segmentation Dataset [52], and MosMedData [53],
as summarized in Table I. We can see that most datasets
only have image-level labels, and only four datasets [51]–
[53] provide pixel-wise labels for COVID-19 infected area
segmentation. Note that COVID-19 CT Segmentation Dataset
[51] has two versions. Hence, we use these four segmentation
datasets in our study.

III. METHODOLOGY

In this section, we first introduce the Attentive Hierarchical
Spatial Pyramid (AHSP) module for effective and lightweight
multiscale learning. Then, we present the network architecture
of MiniSeg for COVID-19 infected area segmentation from
chest CT slices.

A. Attentive Hierarchical Spatial Pyramid Module

Although the factorization of a convolution operation into a
pointwise convolution and a depthwise separable convolution
(DSConv) can significantly reduce the number of network
parameters and computational complexity, it usually comes
with the degradation of accuracy [29]–[32]. Inspired by the
fact that effective multiscale learning plays an essential role
in improving segmentation accuracy [33]–[41], we propose the
AHSP module for effective and efficient multiscale learning
in a lightweight setting. Besides some common convolution
operations, such as vanilla convolution, pointwise convolution,
and DSConv, we introduce the dilated DSConv convolution
that adopts a dilated convolution kernel for each input channel.
Suppose Fk×k

r denotes a vanilla convolution, where k × k
is the size of convolution kernel and r is the dilation rate.
Suppose F̂k×k

r denotes a depthwise separable convolution,
where k × k and r have the same meaning as Fk×k

r . The
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Fig. 2. Illustration of the proposed AHSP module.

subscript r will be omitted without ambiguity if we have a
dilation rate of 1, i.e., r = 1. For example, F1×1 represents
a pointwise convolution (i.e., 1 × 1 convolution). F̂3×3

2 is a
dilated 3× 3 DSConv with a dilation rate of 2.

With the above definitions for basic operations, we continue
by introducing the proposed AHSP module illustrated in
Fig. 2. Let X ∈ RC×H×W be the input feature map so that the
output feature map is E(X) ∈ RC′×H′×W ′ , where E denotes
the transformation function of AHSP for its input. C, H , and
W are the number of channels, height, and width of the input
feature map X, respectively. Similar definitions hold for C ′,
H ′, and W ′. The input feature map X is first processed by a
pointwise convolution to shrink the number of channels into
C ′/K, in which K is the number of parallel branches which
will be described later. This operation can be written as

S = F1×1(X). (1)

Then, the generated feature map S is fed into K parallel
dilated DSConv, i.e.,

Fk = F̂3×3
2k−1(S), k = 1, 2, · · · ,K, (2)

where the dilation rate is increased exponentially for enlarging
the receptive field. Eq. (2) is the basis for multiscale learning
with large dilation rates capturing large-scale contextual in-
formation and small dilation rates capturing local information.
We also add an average pooling operation for S to enrich the
multiscale information, i.e.,

F0 = AvgPool3×3(S), (3)

where AvgPool3×3 represents the average pooling with a
kernel size of 3 × 3. Note that we have Fk ∈ RC′

K ×H
′×W ′

for k = 0, 1, · · · ,K. If we have H 6= H ′ or W 6= W ′, the
convolution and pooling operations in Eq. (2) and Eq. (3) will
have a stride of 2 to downsample the feature map by a scale
of 2; otherwise, the stride will be 1.

These multiscale feature maps produced by Eq. (2) and Eq.
(3) are aggregated in an attentive hierarchical manner. We first
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add them up hierarchically as

Ḟ1 = F0 + F1,

Ḟ2 = Ḟ1 + F2,

· · ·
ḞK = ḞK−1 + FK ,

(4)

where feature maps are gradually fused from small scales
to large scales to enhance the representation capability of
multiscale learning. We further adopt a spatial attention mech-
anism to make the AHSP module automatically learn to focus
on target structures of various scales. On the other hand,
the attention mechanism can also learn to suppress irrelevant
information at some feature scales and emphasize essential
information at other scales. Such self-attention makes each
scale speak for itself to decide how important it is in the
multiscale learning process. The transformation of Ḟ by spatial
attention can be formulated as

F̈k = Ḟk + Ḟk ⊗ σ(F1×1(Ḟk)), k = 1, 2, · · · ,K, (5)

in which σ is a sigmoid activation function and ⊗ indi-
cates element-wise multiplication. The pointwise convolution
in Eq. (5) outputs a single-channel feature map which is
then transformed to a spatial attention map by the sigmoid
function. This attention map is replicated to the same size as
Ḟk, i.e., C′

K × H
′ ×W ′, before element-wise multiplication.

Considering the efficiency, we can compute the attention map
for all K branches together, like

A = σ(F1×1(Concat(Ḟ1, Ḟ2, · · · , ḞK))), (6)

where Concat(·) means to concatenate a series of feature maps
along the channel dimension. The pointwise convolution in Eq.
(6) is a K-grouped convolution with K output channels, so
we have A ∈ RK×H′×W ′ . Hence, we can rewrite Eq. (5) as

F̈k = Ḟk + Ḟk ⊗A[k], k = 1, 2, · · · ,K, (7)

in which A[k] means the k-th channel of A.
Finally, we merge and fuse the above hierarchical feature

maps as

F̈ = Concat(F̈1, F̈2, · · · , F̈K),

E(X) = PReLU(BatchNorm(F1×1(F̈))),
(8)

where BatchNorm(·) denotes the batch normalization and
PReLU(·) indicates PReLU (i.e., Parametric ReLU) activation
function [84]. The pointwise convolution in Eq. (8) is a K-
grouped convolution with C ′ output channels, so that this
pointwise convolution aims at fusing F̈k (k = 1, 2, · · · ,K)
separately, i.e., adding interaction among channels for the
depthwise convolutions in Eq. (2). The fusion among various
feature scales is achieved through the first pointwise convolu-
tion (i.e., Eq. (1)) in the subsequent AHSP module of MiniSeg
and the hierarchical feature aggregation (i.e., Eq. (4)). Such a
design can reduce the number of convolution parameters in
Eq. (8) by K times when compared with that using a vanilla
pointwise convolution, i.e., C ′2/K vs. C ′2.

Given an input feature map X ∈ RC×H×W , we can
compute the output feature map E(X) ∈ RC′×H′×W ′ of an

AHSP module using Eq. (1) - Eq. (8). We can easily find that
increasing K will reduce the number of AHSP parameters.
Considering the balance between segmentation accuracy and
efficiency, we set K = 4 in our experiments. The proposed
AHSP module not only significantly reduces the number of
parameters but also enables us to learn effective multiscale
features so that we can adopt the limited COVID-19 data to
train a high-quality segmenter.

B. Network Architecture

Here, we describe in detail the network architecture of
the proposed lightweight COVID-19 segmenter, i.e., MiniSeg.
MiniSeg has an encoder-decoder structure. The encoder sub-
network focuses on learning effective multiscale representa-
tions for the input image. The decoder sub-network gradually
aggregates the representations at different levels of the encoder
to predict COVID-19 infected areas. The network architecture
of MiniSeg is displayed in Fig. 3.

1) Encoder sub-network: The encoder of MiniSeg uses
AHSP as the basic module, consisting of two paths con-
nected through a series of nested skip pathways. Suppose
I ∈ R3×H×W denotes an input chest CT slice, where a
grayscale CT slice is replicated three times to make its
number of channels the same as color images. The input I is
downsampled four times, resulting in four scales of 1/2, 1/4,
1/8, and 1/16, with four stages processing such four scales,
respectively. Downsampling happens in the first block of each
stage. Previous semantic image segmentation models usually
only downsample images into 1/8 scale [33], [36]–[38], [40],
[41], [60]–[62], [67], [68], [85], however, in this paper, we
downsample until the 1/16 scale for enlarging the receptive
field and reducing the computational complexity.

Suppose in the encoder sub-network we denote the output
feature map of the i-th stage and the j-th block as Ei

j , w.r.t.
i ∈ {1, 2, 3, 4} and j ∈ {1, 2, · · · , Ni}, where Ni indicates
the number of blocks at the i-th stage. Therefore, we have
Ei

j ∈ RCi×H

2i
×W

2i , in which Ci is the number of feature
channels at the i-th stage. The abovementioned block refers to
the proposed AHSP module except for the first stage whose
basic block is the vanilla Convolution Block (CB). Since
the number of feature channels at the first stage (i.e., C1)
is small, the vanilla convolution will not introduce too many
parameters. Without ambiguity, let E ij(·) be the transforma-
tion function of the i-th stage and the j-th block without
distinguishing whether this block is a vanilla convolution
or an AHSP module. For the another path, we propose a
Downsampler Block (DB). The transformation function of
a DB block is denoted as Qi

k(·), w.r.t. i ∈ {1, 2, 3, 4} and
k ∈ {1, 2, · · · ,Mi}, where Mi denotes the number of DB at
the i-th stage. We define DB as

Qi
k(X) = PReLU(BatchNorm(F̂5×5(F1×1(X)))), (9)

where F̂5×5(·) has a stride of 2 for downsampling when we
have k = 1. Suppose the output of Qi

k(·) is Qi
k.

Therefore, for the first block of the first stage, we have

E1
1 = E11 (I), Q1

1 = Q1
1(I). (10)
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Fig. 3. Network architecture of the proposed MiniSeg.

For the first block of other stages, we compute the output
feature map as

Ei−1 = F1×1(Concat(Ei−1
Ni−1

,Qi−1
Mi−1

)),

Ei
1 = E i1(Split(Ei−1) +Ei−1

Ni−1
),

Qi
1 = Qi

1(Split(E
i−1) +Qi−1

Mi−1
),

(11)

where we have i ∈ {2, 3, 4}. The operation Split(·) is to split
a feature map along the channel dimension into two chunks,
which are fed into E i1 and Qi

1, respectively. Here, E i1(·) and
Qi

1(·) (i ∈ {1, 2, 3, 4}) have a stride of 2 for downsampling.
Instead of only using on-the-fly element-wise sum (Eq. (12)
and Eq. (13)), through Eq. (11), we conduct a “concat-fuse-
split” operation to fully integrate the features from the two
paths, as concatenation can do better for feature fusion than
sum by avoiding the information loss of sum [86]. Split(·) is
used to handle the increased number of channels brought by
concatenation.

For other blocks, the output feature map is

Ei
j = E ij(Ei

j−1 +Qi
j′) +Ei

j−1,

w.r.t. i ∈ {1, 2, 3, 4} and j ∈ {2, 3, · · · , Ni},
(12)

where E ij(·) has a stride of 1 and a residual connection is
included for better optimization. We have j′ = j − 1 if we
also have j − 1 ≤ Mi; otherwise, we have j′ = Mi. The
computation of Qi

k can be formulated as

Qi
k = Qi

k(Q
i
k−1 +Ei

k−1) +Qi
k−1,

w.r.t. i ∈ {1, 2, 3, 4} and k ∈ {2, 3, · · · ,Mi}.
(13)

Through Eq. (12) and Eq. (13), the two paths of the encoder
sub-network build nested skip connections. Such a design
benefits the multiscale learning of the encoder. Considering the
balance among the number of network parameters, segmen-
tation accuracy, and efficiency, we set Ci to {8, 24, 32, 64},
Ni to {3, 4, 9, 7}, and Mi to {2, 2, 5, 4} for i ∈ {1, 2, 3, 4},
respectively.

2) The decoder sub-network: The decoder of MiniSeg is
simple for efficient multiscale feature decoding. Since the top
feature map of the encoder has a scale of 1/16 of the original
input, it is suboptimal to predict COVID-19 infected areas
directly due to the loss of fine details. Instead, we utilize a
simple decoder sub-network to gradually upsample and fuse
the learned feature map at each scale. A Feature Fusion
Module (FFM) is proposed for feature aggregation. Let Di(·)
represent the function of FFM:

S′i = F1×1(X),

Di(X) = BatchNorm(F̂3×3(S′i) + F̂3×3
2 (S′i)),

(14)

in which Di(X) (i = 1, 2, 3) has Ci channels as the pointwise
convolution is utilized to adjust such number of channels. We
denote the feature map in the decoder as Di ∈ RCi×H

2i
×W

2i ,
and we have D4 = BatchNorm(F1×1(E4

N4
)). We compute

other Di (i = 3, 2, 1) as

S′′i = Di(Upsample(Di+1, 2)),

Di = PReLU(S′′i +BatchNorm(F1×1(Ei
Ni

))),
(15)
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where Upsample(·, t) means to upsample a feature map by a
scale of t using bilinear interpolation. In this way, the decoder
sub-network enhances the high-level semantic features with
low-level fine details, so that MiniSeg can make accurate
predictions for COVID-19 infected areas.

3) Training and testing: With Di (i = 1, 2, 3, 4) computed,
we can make dense prediction using a pointwise convolution,
i.e.,

Pi = Softmax(Upsample(F1×1(Di), 2
i)), (16)

where Softmax(·) is the standard softmax function and this
pointwise convolution has two output channels representing
two classes of background and COVID-19, respectively. Pi ∈
RH×W is the predicted class label map. In testing, we utilize
P1 as the final output prediction.

In training, we replace the softmax function in Eq. (16)
with the standard cross-entropy loss function, which can be
formulated as

Li = LCEL(Upsample(F1×1(Di), 2
i),G), (17)

in which LCEL(·) indicates the standard cross-entropy loss
function and G is the ground-truth label map. We adopt deep
supervision during training, so the total loss can be calculated
as

L = L1 + λ ·
4∑

i=2

Li, (18)

where λ is a balance weight. In this paper, we follow previous
studies [37], [60], [70] to empirically set λ as 0.4.

IV. EXPERIMENTS

A. Experimental Setup

1) Implementation details: We implement the proposed
MiniSeg network using the well-known PyTorch framework
[87]. Adam optimization [88] is used for training with the
weight decay of 1e-4. We adopt the learning rate policy of
poly, where the initial learning rate is 1e-3. We train 80 epochs
on the training set with a batch size of 5. We train all previous
state-of-the-art segmentation methods using the same training
settings as MiniSeg for a fair comparison. All experiments are
performed on a TITAN RTX GPU.

2) Datasets: As described in Section II, we utilize four
open-access CT datasets for COVID-19 segmentation, i.e., two
versions of the COVID-19 CT Segmentation Dataset [51],
COVID-19 CT Lung and Infection Segmentation Dataset [52],
and MosMedData [53], to evaluate the proposed MiniSeg.
According to the number of CT slices or the number of
COVID-19 patients, we rename these four datasets as COVID-
19-CT100, COVID-19-P9, COVID-19-P20, and COVID-19-
P1110 for convenience, respectively. The information of these
datasets is summarized in Table I. Specifically, COVID-19-
CT100 [51] consists of 100 axial CT slices from ∼60 patients
infected by COVID-19. COVID-19-P9 [51] consists of 9 axial
volumetric CT scans with 829 slices in total, where 373 slices
have been evaluated by a radiologist as positive. COVID-
19-P20 [52] contains 1844 labeled axial CT slices from 20
COVID-19 patients. The last dataset COVID-19-P1110 [53]
are from 1110 patients but only 785 CT slices from 50 patients

has been annotated. We utilize the standard cropping and
random flipping for data augmentation for MiniSeg and all
baselines in training. Moreover, we perform 5-fold cross-
validation to avoid statistically significant differences in per-
formance evaluation.

3) Evaluation metrics: We evaluate COVID-19 segmenta-
tion accuracy using five popular evaluation metrics in medical
imaging analysis, i.e., mean intersection over union (mIoU),
sensitivity (SEN), specificity (SPC), Dice similarity coefficient
(DSC), and Hausdorff distance (HD). The metric of mIoU is
a typical measure for semantic segmentation by computing
the overlap rate between prediction and ground truth for each
class and then averaging across all classes. Here, sensitivity
represents the probability of the COVID-19 infected area of
ground truth to be predicted as it is. Specificity represents
the probability of the background region of ground truth
to be predicted as background. Dice similarity coefficient is
an overlap index that can represent the degree of similarity
between predicted COVID-19 area and ground-truth COVID-
19 area. Hausdorff distance (HD) measures the structural
differences among two given objects and is the minimum
distance between the ground truth and segmented region.
These metrics are defined as follows:

SEN =
TP

TP + FN
, (19)

SPC =
TN

TN + FP
, (20)

DSC =
2× TP

2× TP + FP + FN
, (21)

HD = max(h(Sm, Sa), h(Sa, Sm)), (22)

where TP, FP, TN, FN indicate the number of pixels in the
true positive, false positive, true negative, and false nega-
tive regions, respectively. Sm = {sm1, sm2, . . . , smi} is the
curve generated from ground truth of the COVID-19 infected
area, and Sa = {sa1, sa2, . . . , sai} is the curve formed
by segmentation methods. Suppose we have h(Sm, Sa) =
maxsm∈Sm

minsa∈Sa
||sm − sa|| where || · || is Euclidean

distance; h(Sa, Sm) can be similarly defined. Specifically,
mIoU, SEN, SPC, and DSC range between 0 and 1. The larger
these values, the better the model. Note that a lower value of
HD indicates better segmentation accuracy. Moreover, we also
report the number of parameters, the number of FLOPs, and
speed, tested using a 512 × 512 input image and a TITAN
RTX GPU.

B. Ablation Studies

Before comparing to other methods, we conduct ablation
studies to demonstrate the effectiveness of our model compo-
nents and design choices on four datasets.
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TABLE II
EFFECT OF THE MAIN COMPONENTS IN MINISEG.

SB MB AH TP CS Metrics (%) on COVID-19-CT00 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110
mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓

4 77.82 80.03 97.00 69.32 93.81 83.07 86.34 99.03 76.11 63.55 80.67 83.65 98.04 71.16 70.45 75.78 71.80 96.78 59.63 92.12
4 78.22 81.97 96.90 70.21 87.56 82.40 89.38 99.10 76.19 65.87 80.99 83.59 98.58 71.50 68.51 76.31 76.22 97.40 61.57 88.05
4 4 79.63 83.33 97.07 72.30 89.24 83.50 90.39 99.51 76.96 83.42 81.63 85.10 98.25 71.72 66.38 76.58 77.89 97.61 62.06 83.71
4 4 4 80.80 84.87 97.38 73.81 81.79 83.88 89.58 99.28 77.61 78.17 82.77 83.75 98.20 73.78 57.00 76.66 78.72 97.02 62.05 78.67
4 4 4 4 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69

* A metric marked by ↑ means that a model is better if it achieves higher results in terms of this metric, while ↓ indicates the opposite. The HD metric does not have the unit of %.

TABLE III
EFFECT OF THE TWO-PATH DESIGN IN MINISEG.

Method #Param ↓ FLOPs ↓ Speed ↑ Metrics (%) on CT100 Metrics (%) on P9 Metrics (%) on P9 Metrics (%) on P20
mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓

Single-path 472.44K 2.27G 232.6fps 81.92 84.98 96.59 75.08 71.50 82.86 85.79 99.15 75.32 64.28 83.23 84.70 98.57 74.81 53.44 77.14 79.03 97.21 62.73 76.29
Two-path 82.91K 0.50G 516.3fps 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69
* #Param represents the number of network parameters.

TABLE IV
EFFECT OF SOME DESIGN CHOICES IN MINISEG.

PReLU Decoder DS CB 5×5 DB FFM Metrics (%) on COVID-19-CT100 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110
mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓

ReLU 80.56 84.59 97.33 72.04 82.76 81.43 94.12 98.85 73.28 45.79 82.81 80.17 96.51 71.52 54.45 76.92 75.41 96.90 62.11 78.39
7 78.77 83.97 96.83 70.67 82.86 79.05 87.55 98.08 69.97 73.24 82.04 85.49 98.47 72.27 54.86 73.11 76.31 97.45 55.35 76.72

7 80.74 84.38 97.41 74.13 78.52 81.62 85.66 99.56 73.68 80.54 82.67 85.09 98.75 73.95 58.97 76.45 80.94 96.38 62.46 87.27
AHSP 80.83 85.93 97.32 74.51 78.56 81.51 86.51 99.31 74.15 75.02 82.71 84.04 98.69 73.98 56.10 76.71 78.38 96.38 62.05 78.99

3×3 DB 80.42 85.81 97.18 73.43 86.78 82.43 87.50 98.75 74.69 85.44 82.34 84.03 98.56 73.72 54.72 76.54 78.43 97.09 61.81 80.61
AHSP 80.45 85.24 97.17 73.44 79.50 81.01 85.85 99.01 73.74 68.83 82.84 83.78 98.03 73.82 57.00 77.15 78.69 97.33 62.46 82.98

82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69
* Each design choice is replaced with the operation in the table or directly removed (7). DS: Deep Supervision.

TABLE V
ABLATION STUDIES FOR THE MAIN PARAMETERS OF MINISEG.

Metrics (%) on COVID-19-CT00 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110Configurations mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓
Default Configurations 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69

N1 ∼ N4

{4, 5, 10, 8} 81.40 84.57 97.16 73.83 76.98 85.05 89.16 99.03 77.42 63.71 82.87 84.06 98.22 74.05 51.87 77.02 78.73 97.28 62.33 78.68
{5, 6, 11, 9} 81.58 84.73 97.30 74.38 77.41 84.84 88.85 99.05 78.53 61.04 83.04 85.33 98.49 74.90 54.71 76.83 79.12 96.80 62.96 74.56
{2, 3, 8, 6} 80.17 85.19 97.26 73.34 80.39 82.56 87.64 98.31 73.10 68.30 82.92 83.55 98.11 73.55 56.89 76.63 78.42 96.46 61.71 78.23
{2, 2, 7, 5} 80.33 84.87 97.23 73.39 80.55 83.21 88.01 98.87 74.89 80.50 82.65 83.89 98.62 74.01 58.27 76.91 77.85 96.96 62.51 78.66

M1 ∼M4

{3, 3, 6, 5} 81.44 85.23 97.37 74.58 77.45 84.91 88.36 98.76 76.93 61.90 83.10 84.17 98.41 74.47 53.38 77.12 79.19 97.71 62.47 79.29
{4, 4, 7, 6} 81.12 84.53 97.20 73.86 76.57 85.01 88.23 98.91 77.49 65.05 82.94 84.78 98.56 74.45 54.25 77.03 79.65 97.20 62.82 80.57
{2, 2, 4, 3} 79.72 84.58 96.05 73.55 81.20 82.61 87.42 98.28 74.11 78.76 83.21 84.26 98.30 74.53 56.30 77.08 79.01 96.63 62.91 78.73
{2, 2, 3, 2} 79.85 84.95 96.05 74.20 81.50 82.34 87.74 99.10 74.94 104.83 82.77 84.28 98.00 74.04 52.02 76.87 79.37 97.25 62.63 75.04

C1 ∼ C4

{16, 32, 64, 128} 81.81 84.58 97.46 74.14 74.24 85.04 90.57 99.04 77.66 62.08 82.69 84.71 98.49 74.15 54.50 76.88 80.20 97.42 62.66 81.26
{16, 48, 64, 192} 81.24 82.94 97.71 74.47 75.72 84.88 87.37 98.76 76.75 64.55 83.34 85.08 98.69 75.13 50.44 77.46 79.86 97.58 63.36 79.77
{8, 16, 32, 64} 79.97 85.33 97.07 72.57 80.27 82.58 88.88 98.99 73.75 76.00 82.43 83.87 98.51 73.46 55.03 76.69 78.46 96.66 61.74 78.53
{8, 12, 24, 48} 79.97 83.99 97.09 72.25 79.61 82.39 86.89 98.86 73.13 78.26 82.15 83.49 98.75 73.40 57.78 76.61 79.02 97.34 61.70 79.66

* “Ni”, “Mi”, “Ci” indicate the number of AHSP/CB blocks, DB blocks, feature channels at the i-th stage for i ∈ {1, 2, 3, 4}, respectively. Specially, we set Ni to {3, 4, 9, 7}, Mi to {2, 2, 5, 4}, and Ci to {8, 24, 32, 64}
for i ∈ {1, 2, 3, 4} by default, respectively.

TABLE VI
COMPARISON OF MINISEG WITH DIFFERENT CONFIGURATIONS IN TERMS

OF PARAMETERS, FLOPS, AND SPEED.

Configurations #Param FLOPs Speed
Default Configurations 82.91K 0.50G 516.3fps

N1 ∼ N4

{4, 5, 10, 8} 87.92K 0.56G 464.6fps
{5, 6, 11, 9} 92.93K 0.61G 432.5fps
{2, 3, 8, 6} 77.90K 0.45G 571.2fps
{2, 2, 7, 5} 73.50K 0.43G 625.1fps

M1 ∼M4

{3, 3, 6, 5} 92.26K 0.55G 460.6fps
{4, 4, 7, 6} 101.60K 0.59G 441.9fps
{2, 2, 4, 3} 75.10K 0.49G 518.0fps
{2, 2, 3, 2} 63.70K 0.47G 523.9fps

C1 ∼ C4

{16, 32, 64, 128} 262.87K 1.40G 312.4fps
{16, 48, 64, 192} 448.95K 1.88G 264.4fps
{8, 16, 32, 64} 78.61K 0.42G 567.1fps
{8, 12, 24, 48} 50.03K 0.33G 658.9fps

1) Effect of main components: As shown in Table II, we
start with a single-branch (SB) module that only has the
DSConv with a dilation rate of 1. Replacing all AHSP modules
in MiniSeg with such SB modules and removing the two-
path design of the MiniSeg encoder, we obtain the baseline of
the proposed MiniSeg. As shown in the 1st line of Table II,
this baseline achieves mIoU of 77.82%, 83.07%, 80.67%,

and 75.78% on COVID-19-CT100, COVID-19-P9, COVID-
19-P20, and COVID-19-P1110 datasets, respectively. Then,
we extend such an SB module to a multi-branch (MB)
module using the spatial pyramid as in the AHSP module.
The results are summarized in the 2nd line of Table II. This
MB module improves the SB module in almost all cases,
indicating the necessity of multiscale learning in COVID-19
segmentation. Next, we add the attentive hierarchical fusion
strategy (AH) to get the AHSP module, so we can improve the
mIoU to 79.63%, 83.50%, 81.63%, and 76.58% on COVID-
19-CT100, COVID-19-P9, COVID-19-P20, and COVID-19-
P1110 datasets, respectively. Besides the mIoU metric, we
can clearly see that the attentive hierarchical fusion strategy
leads to further performance boost in most cases, as depicted
in the 3rd line of Table II. This suggests the superiority
of the attentive hierarchical fusion. We continue by adding
the two-path design (TP) to the encoder sub-network. As
shown in the 4th line of Table II, we further improve the
mIoU to 80.80%, 83.88%, 82.77%, and 76.66% on COVID-
19-CT100, COVID-19-P9, COVID-19-P20, and COVID-19-
P1110 datasets, respectively. This validates that such a two-
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TABLE VII
ABLATION STUDIES FOR THE HYPER-PARAMETERS OF MINISEG.

Metrics (%) on COVID-19-CT00 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110Configurations mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓
Default Configurations 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69

Learning Rate

5e-4 79.36 85.79 96.80 72.65 81.48 83.33 87.22 99.28 72.24 74.77 82.89 83.43 98.69 74.26 55.27 76.66 75.94 96.34 61.10 74.47
1e-3 79.21 84.57 96.27 76.70 79.64 77.54 84.18 99.45 68.45 87.06 81.44 81.43 97.44 70.34 63.98 74.39 77.40 98.74 74.06 84.47
5e-3 81.00 85.95 97.35 75.73 74.84 80.13 89.28 98.19 71.66 79.80 81.80 85.25 98.35 72.66 66.25 74.03 82.02 97.28 58.53 98.94

Batch Size

4 81.31 84.88 97.22 74.46 76.28 84.65 87.85 99.29 75.35 72.70 82.93 82.71 97.90 73.71 55.91 76.50 79.88 96.91 61.61 80.28
6 81.14 84.74 97.08 73.64 83.22 831.72 88.46 98.74 74.06 84.47 82.91 84.29 98.77 74.16 57.30 76.69 79.35 97.42 62.63 82.11
8 80.08 84.81 96.93 72.55 82.53 83.47 88.99 99.37 73.62 84.21 82.49 83.65 98.42 73.96 57.17 76.79 77.84 96.45 62.19 74.65

Epoch

50 79.08 84.37 95.74 71.93 76.46 82.34 87.15 98.99 71.73 89.61 82.62 83.73 98.78 73.38 57.37 76.40 80.43 97.78 61.89 81.22
60 80.54 85.83 96.89 73.17 86.22 83.18 87.81 99.41 72.69 72.49 82.90 83.99 99.03 74.20 54.17 77.02 78.75 96.99 62.15 77.75
100 81.70 85.84 97.21 74.25 75.80 85.13 84.75 98.57 74.34 70.27 82.78 84.32 98.52 74.24 55.76 77.30 78.31 96.64 62.88 77.54

Weight Decay

5e-5 80.71 84.82 95.99 73.18 84.52 82.11 90.15 99.27 74.80 69.50 82.97 84.96 98.72 74.44 53.73 76.46 78.19 96.72 62.13 77.34
1e-5 80.54 86.22 96.93 73.27 82.39 81.78 85.80 99.33 73.32 68.33 82.96 84.67 98.63 74.22 52.23 76.93 77.15 97.19 62.58 76.74
5e-4 80.30 85.17 96.12 73.78 82.15 81.08 87.66 98.40 72.80 84.54 83.08 87.15 98.77 74.44 57.80 75.91 79.60 97.09 60.97 88.63

* By default, the learning rate, batch size, number of training epochs, weight decay are set to 1e-4, 5, 80, 1e-4, respectively.

TABLE VIII
ABLATION STUDIES FOR THE RANDOM SEEDS DURING NETWORK TRAINING.

Metrics (%) on COVID-19-CT00 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110Random Seeds mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓ mIoU ↑ SEN ↑ SPC ↑ DSC ↑ HD ↓
Unfixed 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69

Fixed

0 82.13 84.71 97.79 75.21 74.80 85.56 89.56 99.34 80.13 59.63 84.15 84.92 98.86 75.77 51.81 78.48 79.63 97.76 64.92 73.21
1 82.33 85.19 97.66 75.21 74.85 85.08 89.18 99.28 78.85 60.85 84.51 85.13 99.00 76.79 54.03 78.02 79.15 97.43 64.59 72.64

42 82.16 84.73 97.75 74.96 74.15 85.08 90.22 99.03 79.49 57.39 83.98 84.99 98.73 75.26 51.34 78.19 79.46 97.22 64.47 70.35
100 82.00 85.55 97.83 75.26 74.64 85.77 88.54 98.93 80.31 56.17 84.37 85.05 98.90 76.18 52.29 78.30 79.64 97.80 65.01 72.16

Average Values 82.15 85.03 97.75 75.31 74.57 85.36 89.62 99.15 79.77 58.50 84.30 85.03 98.91 76.05 52.11 78.26 79.50 97.58 64.77 72.01
Standard Deviations 0.105 0.315 0.058 0.318 0.259 0.271 0.733 0.152 0.535 1.641 0.205 0.071 0.112 0.513 1.049 0.153 0.187 0.217 0.204 0.971

TABLE IX
COMPARISON BETWEEN MINISEG AND PREVIOUS STATE-OF-THE-ART SEGMENTATION METHODS.

Method Metrics (%) on COVID-19-CT100 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110
mIoU ↑SEN ↑SPC ↑DSC ↑ HD ↓ mIoU ↑SEN ↑SPC ↑DSC ↑ HD ↓ mIoU ↑SEN ↑SPC ↑DSC ↑ HD ↓ mIoU ↑SEN ↑SPC ↑DSC ↑ HD ↓

U-Net [55] 77.56 72.24 97.71 68.37 94.25 76.51 88.53 98.93 65.69 133.64 81.81 82.73 97.92 72.66 61.66 74.26 81.85 97.33 58.62 95.72
FCN-8s [54] 71.85 66.47 93.56 58.11 104.68 81.20 87.12 98.40 72.67 91.32 82.54 84.10 98.02 73.60 51.47 70.51 80.75 97.08 53.33 84.43
SegNet [59] 75.02 80.02 96.34 64.84 109.05 73.88 73.59 98.79 62.07 98.38 79.55 81.68 98.44 69.68 77.28 72.32 76.77 97.24 55.92 105.42
FRRN [40] 79.20 78.47 97.50 71.27 86.56 80.83 86.26 99.54 74.03 84.34 80.61 80.75 97.53 71.43 61.28 73.84 75.45 95.80 58.86 87.11
PSPNet [37] 75.61 70.82 96.47 64.55 99.76 82.15 86.84 99.19 74.85 94.40 81.60 83.44 98.17 71.60 65.60 71.41 80.34 97.40 54.82 87.06
DeepLabv3 [34] 81.30 84.80 97.48 74.65 81.77 81.50 85.23 98.56 73.10 95.72 80.26 81.60 97.78 70.96 60.50 72.91 80.45 96.85 55.70 81.35
DenseASPP [36] 78.43 81.14 97.02 70.37 156.23 72.78 70.26 98.65 65.53 98.61 81.11 82.21 97.80 71.68 64.05 74.84 69.38 95.65 57.24 76.61
DFN [41] 81.07 84.27 97.49 74.45 83.73 79.19 85.78 98.64 69.93 106.23 79.13 80.96 96.51 69.46 66.56 73.40 80.12 97.13 57.31 87.10
EncNet [60] 71.28 74.11 95.20 62.83 119.55 81.35 86.88 98.65 72.62 94.77 82.43 84.94 98.03 71.60 71.57 71.65 81.23 96.65 54.89 77.82
DeepLabv3+ [35] 79.45 79.58 97.55 71.70 93.09 81.29 77.93 99.30 73.48 81.95 81.26 81.61 95.35 42.79 182.14 74.14 74.65 97.26 57.16 102.78
BiSeNet [89] 63.09 74.07 87.41 58.66 110.47 72.33 67.17 96.35 55.40 164.07 78.08 76.13 97.07 65.24 85.94 70.29 70.90 95.49 52.26 95.11
UNet++ [56] 77.64 77.26 97.28 69.04 91.73 77.95 86.83 99.39 69.27 104.83 80.73 79.61 96.75 70.34 63.01 73.39 75.67 96.13 59.08 88.21
Attention U-Net [57] 77.71 74.75 97.56 68.93 92.15 76.26 76.39 99.24 66.74 102.43 80.70 82.92 97.41 71.27 64.91 74.62 81.32 97.63 59.34 95.16
OCNet [90] 69.29 72.86 89.38 56.14 105.66 81.14 87.41 98.71 72.94 113.21 80.74 80.71 95.82 69.36 56.60 72.05 79.67 97.64 53.97 97.38
DUpsampling [91] 81.69 84.54 97.60 75.27 81.07 79.96 74.42 96.38 69.60 64.62 81.05 79.37 96.34 71.01 60.19 72.16 65.18 91.77 53.98 72.29
DANet [92] 73.57 66.30 92.76 61.34 99.11 81.59 88.78 99.13 73.82 114.69 78.35 79.87 97.31 67.04 83.13 73.47 75.00 95.80 56.07 74.04
CCNet [61] 75.24 69.55 95.92 63.99 98.03 81.27 86.61 99.16 73.93 90.84 82.22 82.93 97.76 73.13 56.98 72.02 79.16 96.29 54.83 83.07
ANNNet [62] 73.93 66.73 95.72 62.06 102.43 79.52 85.20 98.35 69.55 109.31 81.92 84.10 98.13 72.72 56.99 72.28 81.19 97.30 55.21 83.16
GFF [93] 75.75 69.80 97.53 63.88 103.87 81.20 85.35 98.46 72.61 113.48 82.44 84.29 97.49 73.05 63.84 71.82 81.10 96.50 53.88 86.39
Inf-Net [25] 81.62 76.50 98.32 74.44 86.81 80.28 77.59 98.72 71.76 69.46 64.62 69.46 99.02 63.38 79.68 74.32 62.93 93.45 56.39 71.77
MobileNet [29] 80.07 81.19 95.92 63.99 98.03 81.32 85.53 99.62 74.18 128.95 80.52 82.66 97.95 72.05 70.70 74.84 80.08 97.67 59.91 92.88
MobileNetv2 [30] 79.73 82.83 97.32 72.53 88.40 80.09 81.77 99.45 72.16 85.15 80.99 83.16 98.20 71.50 68.54 74.32 80.41 96.96 59.43 93.11
ShuffleNet [31] 77.50 74.57 97.64 69.02 86.97 80.87 83.62 99.28 72.66 105.56 81.97 82.34 98.03 73.33 56.68 74.51 77.73 96.38 58.64 78.16
ShuffleNetv2 [32] 78.58 81.21 97.30 71.37 84.72 79.54 82.44 98.75 70.29 102.75 81.31 81.86 98.29 71.67 70.06 74.56 76.89 96.58 58.67 78.55
EfficientNet [94] 78.22 80.25 97.04 70.45 75.26 73.13 73.50 99.25 60.20 133.45 81.58 80.10 98.06 72.12 64.30 73.30 80.66 97.07 58.04 96.30
ENet [85] 79.49 81.26 97.53 71.57 96.08 79.27 79.62 99.07 70.43 101.92 77.57 76.35 97.16 68.23 67.40 74.49 74.86 96.38 57.20 85.32
ESPNet [38] 77.45 84.18 96.48 69.30 97.04 76.79 71.30 98.67 67.68 93.58 80.32 80.53 97.52 69.36 91.84 74.75 72.06 96.96 57.77 94.58
CGNet [67] 79.34 81.55 96.34 71.42 90.37 75.10 70.27 92.57 60.37 134.43 82.24 80.73 97.35 72.35 53.63 74.12 74.83 96.16 56.45 74.34
ESPNetv2 [39] 78.66 77.84 96.53 70.46 87.77 78.22 72.42 97.23 67.12 88.58 80.78 79.03 97.41 70.13 73.67 74.10 76.60 97.67 58.37 96.73
EDANet [68] 78.74 82.86 96.98 70.67 88.14 80.11 79.40 98.77 72.89 70.40 79.56 76.79 97.42 68.71 70.72 73.21 73.73 96.71 55.11 84.56
LEDNet [69] 77.41 81.69 96.93 68.74 92.49 78.46 80.96 98.47 70.41 120.74 80.34 78.74 97.90 70.10 65.77 73.46 72.27 95.14 55.09 94.19
MiniSeg 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69

path design can benefit the network optimization. At last,
we add the channel split (CS) operation to obtain the final
MiniSeg model, which further pushes the mIoU to 82.15%,
85.31%, 84.49%, and 78.33% on COVID-19-CT100, COVID-
19-P9, COVID-19-P20, and COVID-19-P1110 datasets, re-
spectively (the 5th line of Table II). These ablation studies
demonstrate that the main components in MiniSeg are all
effective for COVID-19 segmentation.

In Table II, we study the effect of the two-path design
by evaluating only the main path (i.e., Ei

j). In Table III, we
enlarge the number of channels of the single-path baseline
so that it has the same channels as the concatenation of the
two paths. From Table III, the single-path baseline has more
parameters, more FLOPs, lower speed, and lower accuracy,
suggesting the effectiveness of the two-path design.
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TABLE X
COMPARISON OF MINISEG TO PREVIOUS STATE-OF-THE-ART METHODS IN

TERMS OF PARAMETERS, FLOPS, AND SPEED.

Method Publication Backbone ImageNet #Param FLOPs Speed
U-Net [55] MICCAI’2015 - No 8.43M 65.73G 57.3fps
FCN-8s [54] TPAMI’2017 VGG16 Yes 15.53M 105.97G 4.5fps
SegNet [59] TPAMI’2017 - No 28.75M 160.44G 3.0fps
FRRN [40] CVPR’2017 - No 17.30M 237.70G 15.8fps
PSPNet [37] CVPR’2017 ResNet50 Yes 64.03M 257.79G 17.1fps
DeepLabv3 [34] arXiv’2017 ResNet50 Yes 38.71M 163.83G 25.3fps
DenseASPP [36] CVPR’2018 - No 27.93M 122.28G 19.3fps
DFN [41] CVPR’2018 ResNet50 Yes 43.53M 81.88G 56.2fps
EncNet [60] CVPR’2018 ResNet50 Yes 51.25M 217.46G 18.1fps
DeepLabv3+ [35] ECCV’2018 Xception Yes 53.33M 82.87G 3.4fps
BiSeNet [89] ECCV’2018 ResNet18 Yes 12.50M 13.01G 172.4fps
UNet++ [56] DLMIA’2018 - No 8.95M 138.37G 26.8fps
Attention U-Net [57] MIDL’2018 - No 8.52M 67.14G 49.2fps
OCNet [90] IJCV’2021 ResNet50 Yes 51.60M 220.69G 19.3fps
DUpsampling [91] CVPR’2019 ResNet50 Yes 28.46M 123.01G 36.5fps
DANet [92] CVPR’2019 ResNet50 Yes 64.87M 275.72G 16.4fps
CCNet [61] CVPR’2019 ResNet50 Yes 46.32M 197.92G 40.0fps
ANNNet [62] ICCV’2019 ResNet50 Yes 47.42M 203.07G 32.8fps
GFF [93] AAAI’2020 ResNet50 Yes 90.57M 374.03G 17.5fps
Inf-Net [25] TMI’2020 ResNet50 Yes 30.19M 27.30G 155.9fps
MobileNet [29] arXiv’2017 MobileNet Yes 3.13M 3.02G 416.7fps
MobileNetv2 [30] CVPR’2018 MobileNetv2 Yes 2.17M 1.60G 137.0fps
ShuffleNet [31] CVPR’2018 ShuffleNet Yes 0.92M 0.75G 116.3fps
ShuffleNetv2 [32] ECCV’2018 ShuffleNetv2 Yes 1.22M 0.77G 142.9fps
EfficientNet [94] ICML’2019 EfficientNet No 8.37M 13.19G 48.1fps
ENet [85] arXiv’2016 - No 0.36M 1.92G 71.4fps
ESPNet [38] ECCV’2018 - No 0.35M 1.76G 125.0fps
CGNet [67] TIP’2020 - No 0.49M 3.40G 73.0fps
ESPNetv2 [39] CVPR’2019 - No 0.34M 0.77G 73.0fps
EDANet [68] MM’2019 - No 0.68M 4.43G 147.1fps
LEDNet [69] ICIP’2019 - No 2.26M 6.32G 94.3fps
MiniSeg - - No 82.91K 0.50G 516.3fps

2) Effect of some design choices: Besides the above main
components, we also conduct ablation studies for some design
choices of MiniSeg. The results are provided in Table IV.
First, we replace the PReLU activation function with the ReLU
function. Second, we remove the decoder sub-network and
change the stride of the last stage from 2 to 1, so we can
directly make predictions at the scale of 1/8 and upsample
to the original size, as in previous studies [33], [36]–[38],
[40], [41], [60], [61], [67], [68], [85]. Third, we remove deep
supervision in training, which means that only L1 in Eq. (18)
is used. Fourth, we replace Convolution Blocks (CB) in the
first stage with AHSP modules. Fifth, we replace the 5 × 5
DSConv in the Downsampler Blocks (DB) with 3×3 DSConv.
Sixth, we replace the Feature Fusion Modules (FFM) in the
decoder sub-network with AHSP modules. We can see that
the default setting achieves the best overall performance on
all four datasets, demonstrating the efficacy of our designs.

3) Impact of main parameters: In this part, we study the
impact of various parameters of MiniSeg and explain how
the default parameters are set. “Ni”, “Mi”, and “Ci” indicate
the number of AHSP/CB blocks, DB blocks, feature channels
at the i-th stage for i ∈ {1, 2, 3, 4}, respectively. Table V
shows the segmentation results of MiniSeg with different
configurations. In general, the default setting achieves the best
performance. All other configurations can bring some perfor-
mance degradation, but overall, MiniSeg is robust to various
parameters. Moreover, Table VI displays the comparison of
MiniSeg with different configurations in terms of parameters,
FLOPs and speed. Considering the balance between segmen-
tation accuracy and efficiency, we set the default number of
AHSP/CB blocks, DB blocks, feature channels for four stages
to {3, 4, 9, 7}, {2, 2, 5, 4}, and {8, 24, 32, 64}, respectively.

4) Impact of training hyper-parameters: In the following
ablation studies, we provide justification for the choice of
training hyper-parameters. We use the control variable method
to explore the impact of the main training hyper-parameters,
including the learning rate, batch size, training epochs, and
weight decay. Table VII shows the performance of MiniSeg
under different training settings. Considering a group of rows
concerning a hyper-parameters of Table VII, we only change
it and leave other hyper-parameters to their default values.
In this way, the change of results in terms of five metrics
under different values of a hyper-parameter can indicate the
preference of this hyper-parameter. Following the recent study,
we consider setting the learning rate, batch size, epochs
and weight decay to (1e-4, 5e-5, 1e-3, 5e-3), (4, 5, 6, 8),
(50, 60, 80, 100), and (1e-5, 5e-5, 1e-4, 5e-4), respectively.
Specially, the default learning rate, batch size, epochs and
weight decay are set to 1e-4, 5, 80, 1e-4, whose results are
provided in the first row of Table VII. The results of other
settings of these training hyper-parameters are listed in the
rows of different groups in Table VII. From Table VII, we can
conclude that MiniSeg can achieve the optimal performance
under the default training hyper-parameters setting. Besides,
the performance of MiniSeg under other training settings is
still better than baseline models in general.

5) Impact of random training seeds: In our experiments,
we train MiniSeg using 5-fold cross-validation with unfixed
random seed to ensure the robustness of MiniSeg, and in
fact, we only train our final model one time. In the following
ablation studies, we train our MiniSeg multiple times with
different random seeds to verify the impact of different random
seeds and further compute the statistical measure, i.e., standard
deviations. Here, we select four widely-used random seeds,
i.e., 0, 1, 42, 100. From the results shown in Table VIII, we
can conclude that the different random seeds only have little
effect on segmentation performance, which is consistent to our
viewpoint: the performance of a robust model should not rely
on the value of random seeds.

C. Comparison with State-of-the-art Methods

1) Quantitative Evaluation: To compare MiniSeg to pre-
vious state-of-the-art competitors and promote COVID-19
segmentation research, we build a comprehensive benchmark.
This benchmark contains 31 previous state-of-the-art image
segmentation methods, including U-Net [55], FCN-8s [54],
SegNet [59], FRRN [40], PSPNet [37], DeepLabv3 [34],
DenseASPP [36], DFN [41], EncNet [60], DeepLabv3+ [35],
BiSeNet [89], UNet++ [56], Attention U-Net [57], OCNet
[90], DUpsampling [91], DANet [92], CCNet [61], ANNNet
[62], GFF [93], Inf-Net [25], MobileNet [29], MobileNetv2
[30], ShuffleNet [31], ShuffleNetv2 [32], EfficientNet [94],
ENet [85], ESPNet [38], CGNet [67], ESPNetv2 [39], EDANet
[68], and LEDNet [69]. Among them, Inf-Net [25] is de-
signed for COVID-19 infected area segmentation. U-Net [55],
UNet++ [56], and Attention U-Net [57] are well-known
models for medical image segmentation. Besides, MobileNet
[29], MobileNetv2 [30], ShuffleNet [31], ShuffleNetv2 [32],
and EfficientNet [94] are designed for lightweight image
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TABLE XI
COMPARISON BETWEEN MINISEG AND SOME COMPETITIVE SEGMENTATION METHODS WITH THEIR OPTIMAL TRAINING SETTINGS.

Method Metrics (%) on COVID-19-CT100 Metrics (%) on COVID-19-P9 Metrics (%) on COVID-19-P20 Metrics (%) on COVID-19-P1110
mIoU ↑SEN ↑SPC ↑DSC ↑HD ↓mIoU ↑SEN ↑SPC ↑DSC ↑ HD ↓ mIoU ↑SEN ↑SPC ↑DSC ↑HD ↓mIoU ↑SEN ↑SPC ↑DSC ↑HD ↓

U-Net [55] 78.25 73.78 97.81 69.58 94.21 79.64 89.52 98.72 70.35 108.29 83.42 83.88 98.55 72.69 58.14 76.58 80.49 97.04 59.63 78.25
PSPNet [37] 78.01 71.77 97.34 66.73 96.51 83.96 87.08 99.11 76.78 70.58 82.30 83.85 99.00 72.16 61.50 72.98 80.22 98.47 56.05 79.83
DeepLabv3 [34] 81.75 84.18 97.57 75.39 79.95 83.19 86.33 98.97 75.69 68.91 82.13 82.38 98.26 73.04 57.64 74.89 80.64 98.76 58.76 81.35
DUpsampling [91] 81.95 84.94 97.71 75.56 83.30 82.59 76.34 97.85 72.28 60.29 83.86 81.04 97.92 73.86 56.69 74.23 66.28 93.05 54.71 71.99
Inf-Net [25] 82.36 77.69 98.97 75.03 84.86 81.46 78.93 99.16 72.39 65.71 67.84 71.30 98.79 66.27 68.49 76.48 63.49 95.83 58.02 69.95
MobileNet [29] 81.31 82.06 96.17 65.19 92.63 82.17 86.35 99.24 76.28 97.06 82.85 83.94 98.13 73.85 67.59 75.46 80.20 97.69 60.42 90.78
ShuffleNetv2 [32] 79.37 81.46 97.65 71.86 82.40 81.15 87.27 99.31 72.99 110.82 82.51 81.76 98.61 72.09 64.32 75.45 76.97 95.85 58.96 76.33
ENet [85] 79.77 81.98 97.60 72.34 90.85 81.04 82.46 98.93 72.15 89.62 78.01 75.66 97.25 68.85 65.09 75.93 76.42 96.99 59.02 81.86
CGNet [67] 80.25 82.19 97.04 72.56 80.83 77.04 73.45 93.19 62.71 122.93 83.11 81.96 97.72 73.89 52.54 75.37 75.14 96.96 57.04 74.12
EDANet [68] 80.22 83.96 97.31 72.85 81.14 82.37 85.46 99.05 74.12 66.59 81.12 77.28 97.42 70.89 65.83 74.57 74.39 96.68 56.24 79.31
MiniSeg 82.15 84.95 97.72 75.91 74.42 85.31 90.60 99.15 80.06 58.46 84.49 85.06 99.05 76.27 51.06 78.33 79.62 97.71 64.84 71.69
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Fig. 4. Statistical analyses for MiniSeg on four datasets. Left of each sub-figure: The DSC score vs. the infected area; Right of each sub-figure: The DSC
score vs. the lesion count in the corresponding CT slice.

classification. We view them as the encoder and add the
decoder of MiniSeg to them so that they are reformed as
image segmentation models. Moreover, ENet [85], ESPNet
[38], CGNet [67], ESPNetv2 [39], EDANet [68], and LEDNet
[69] are well-known lightweight segmentation models. The
code of these methods is provided online by the authors. We
believe that this benchmark would be useful for future research
on COVID-19 segmentation.

The comparison between MiniSeg and other competitors, in
terms of the number of parameters, the number of FLOPs, and
speed, is summarized in Table X. We can clearly see that the
numbers of parameters and FLOPs of MiniSeg are extremely
small. Meanwhile, the speed of MiniSeg is much faster than
others. Table X also provides the initialization information
of all models. “Yes” indicates the models are initialized
with the weights pre-trained on the ImageNet dataset [95],
and “No” otherwise. Note that pre-training can be viewed
as a pre-processing step, which needs to occupy additional

training resources. It is clear that MiniSeg does not need to be
pretrained on ImageNet [95] owing to its small model size, but
can achieve superior performance. The numerical evaluation
results of MiniSeg and other competitors are presented in
Table IX. MiniSeg consistently achieves the best or close to
the best performance in terms of all metrics on all datasets. For
the metric of SPC, MiniSeg performs slightly worse than the
best method on COVID-19-CT100 and COVID-19-P9. On the
COVID-19-P1110 dataset, MiniSeg does not achieve the best
results in terms of SEN. The fact that MiniSeg consistently
outperforms other competitors demonstrates its effectiveness
and superiority in COVID-19 infected area segmentation. Note
that MiniSeg does not need to be pretrained on ImageNet [95]
owing to its small model size. Therefore, we can come to the
conclusion that MiniSeg has a low computational load, a fast
speed, and good accuracy, making it convenient for practical
deployment that is of high importance in the current severe
situation of COVID-19.
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CT Slice U-Net FCN DeepLabV3+ UNet++ Attention UNet Inf-Net ShuffleNetV2 ESPNetv2 MiniSeg

Fig. 5. Visual comparison between MiniSeg and other methods. Red: true positive; Green: false negative; Blue: false positive.

We can see that lightweight models, including Mobilenets
[29], [30], ShuffleNets [31], [32], EfficientNet [94], and
lightweight segmentation models, seem to outperform tradi-
tional segmentation networks, which validates our hypothesis
that networks with a small number of parameters are more
suitable for COVID-19 segmentation due to the limited train-
ing data. However, the proposed MiniSeg are more stable and
superior across various evaluation metrics. Among traditional
large networks, U-Net [55] and FCN-8s [54] achieve pretty
good performance. This may be because the simple U-Net
and FCN-8s are easy to train than other complicated networks,
further demonstrating that previous cumbersome segmentation
networks are not suitable for COVID-19 segmentation.

Moreover, we use the same training settings as MiniSeg
to train all baseline models. However, different models may
prefer different settings. Hence, to achieve a fair and rigorous
comparison, we train multiple times for each baseline model
with different training settings so that every model has a
chance to find its optimal settings. Here, we mainly focus

on four training hyper-parameters, i.e., the learning rate, batch
size, training epochs, and weight decay. In addition, this com-
parison is conducted only for some well-known or competitive
baseline models. The results are shown in Table XI. As can
be seen, the performance of baseline models is generally
improved but still far worse than the proposed MiniSeg.

2) Statistical Analyses: To further study the characteris-
tics of MiniSeg, we perform statistical analysis on COVID-
19-CT100, COVID-19-P9, COVID-19-P20, and COVID-19-
P1110 datasets. Fig. 4 illustrates the relationship between the
DSC score and the size of the infected area or the lesion count
in a CT slice. We find that MiniSeg achieves a DSC score
larger than 0.7 for most CT slices regardless of the size of
the infected area. The medium DSC is above 0.8 regardless of
the lesion count. Only COVID-19-P1110 dataset has a small
part of CT slices with results below 0.5. This suggests that
MiniSeg is robust to different cases for COVID-19 infected
area segmentation.
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3) Qualitative Comparison: To explicitly show the su-
periority of MiniSeg, we provide a qualitative comparison
between MiniSeg and eight previous state-of-the-art methods
in Fig. 5. We select some representative images from the four
datasets. This visual comparison further indicates that MiniSeg
outperforms baseline methods remarkably. We can observe
that the results of MiniSeg are very close to the ground-
truth segmentation. Specifically, in the subtle regions, we can
see that our method can successfully segment the COVID-
19 infected areas with fine-grained details, leading to better
infection segmentation.

V. CONCLUSION

Lots of recent studies show that the early screening of the
infected areas is important to the fight against COVID-19. If
the infected areas in radiological images can be segmented
at the early stage, the patients will have a higher chance
to survive. Hence, in this paper, we focus on segmenting
COVID-19 infected areas from chest CT slices. To address
the lack of COVID-19 training data and meet the efficiency
requirement for the deployment of computer-aided COVID-
19 screening systems, we propose an extremely minimum
network, i.e., MiniSeg, for accurate and efficient COVID-
19 segmentation. MiniSeg adopts a novel multiscale learn-
ing module, i.e., the Attentive Hierarchical Spatial Pyramid
(AHSP) module, to ensure its accuracy under the constraint
of the extremely minimum network size. MiniSeg also utilizes
a two-path architecture for learning complementary contextual
and fine-grained features. To extensively compare MiniSeg
with previous image segmentation methods and promote future
research on COVID-19 segmentation, we build a comprehen-
sive benchmark that would be useful for future research. The
comparison between MiniSeg and state-of-the-art segmenta-
tion methods demonstrates that MiniSeg not only achieves the
best efficacy but also has high efficiency. In conclusion, we
provide an effective tool to assist radiologists to accurately
determine the exact location and shape of the infected areas
of COVID-19. Our study sheds some light on that artificial
intelligence, especially deep learning, can thoroughly facilitate
the screening and treatment of COVID-19.

In the future, we will further pay the effort to improve
computer-aided COVID-19 screening sensitivity and make the
network more lightweight, pushing this field to clinical de-
ployment. Moreover, we will generalize the proposed MiniSeg
into a wider range of practical scenarios, such as facilitating
segmenting more types of lesions from radiological images.
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[2] O. Tutsoy, Ş. Çolak, A. Polat, and K. Balikci, “A novel parametric
model for the prediction and analysis of the COVID-19 casualties,” IEEE
Access, vol. 8, pp. 193 898–193 906, 2020.

[3] O. Tutsoy and A. Polat, “Linear and non-linear dynamics of the
epidemics: System identification based parametric prediction models for
the pandemic outbreaks,” ISA Transactions, 2021.

[4] O. Tutsoy, K. Balikci, and N. F. Ozdil, “Unknown uncertainties in the
COVID-19 pandemic: Multi-dimensional identification and mathemati-
cal modelling for the analysis and estimation of the casualties,” Digital
Signal Process. (DSP), vol. 114, p. 103058, 2021.

[5] W. Wang, Y. Xu, R. Gao, R. Lu, K. Han, G. Wu, and W. Tan, “Detection
of SARS-CoV-2 in different types of clinical specimens,” J. American
Medical Association, 2020.

[6] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, and
L. Xia, “Correlation of chest CT and RT-PCR testing in coronavirus
disease 2019 (COVID-19) in China: A report of 1014 cases,” Radiology,
vol. 296, no. 2, pp. E32–E40, 2020.

[7] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, and W. Ji,
“Sensitivity of chest CT for COVID-19: Comparison to RT-PCR,”
Radiology, vol. 296, no. 2, pp. E115–E117, 2020.

[8] A. Shamsi, H. Asgharnezhad, S. S. Jokandan, A. Khosravi, P. M.
Kebria, D. Nahavandi, S. Nahavandi, and D. Srinivasan, “An uncertainty-
aware transfer learning-based framework for COVID-19 diagnosis,”
IEEE Trans. Neur. Net. Learn. Syst. (TNNLS), vol. 32, no. 4, pp. 1408–
1417, 2021.

[9] S. Dong, Q. Yang, Y. Fu, M. Tian, and C. Zhuo, “RCoNet: De-
formable mutual information maximization and high-order uncertainty-
aware learning for robust COVID-19 detection,” IEEE Trans. Neur. Net.
Learn. Syst. (TNNLS), 2021.
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