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Abstract—Recent progress in salient object detection (SOD)
mainly depends on the Atrous Spatial Pyramid Pooling (ASPP)
module for multi-scale learning. Intuitively, different input im-
ages, different pixels, and different network layers may have
different preferences for various feature scales. However, ASPP
treats all feature scales as equally important by a simple sum
operation. To this end, we propose Attentive Atrous Spatial
Pyramid Pooling (A2SPP) by adding a new Cubic Information-
Embedding Attention (CIEA) module at each branch of ASPP. In
this way, each position in the 3D feature map can automatically
learn the feature scales it prefers. Specifically, CIEA consists
of Spatial-Embedding Channel Attention (SECA) and Channel-
Embedding Spatial Attention (CESA). Instead of the previous
direct squeeze and ignoring of one dimension when computing
the attention for the other dimension, SECA/CESA attempts to
embed spatial/channel information into channel/spatial attention,
respectively. In addition, CIEA learns SECA and CESA for
each 3D position simultaneously rather than previous separate
computation of channel and spatial attention for each 2D position.
Incorporating A2SPP and CIEA, the proposed A2SPPNet per-
forms favorably against previous state-of-the-art SOD methods.

Index Terms—Salient object detection, saliency detection,
ASPP, A2SPP, attention mechanism.

I. INTRODUCTION

SALIENT object detection (SOD), also known as saliency
detection, aims at detecting the most conspicuous ob-

jects/regions in an image [1]–[3]. SOD is a crucial pre-
processing step for many computer vision tasks such as visual
tracking [4], image retrieval [5], video object segmentation
[6], content-aware image editing [7], image thumbnailing [8],
object recognition [9], and weakly-supervised learning [10],
[11]. Recent progress on SOD mainly relies on convolu-
tional neural networks (CNNs), especially fully convolutional
networks (FCNs) [12], which can extract pixel-wise deep
features from raw images and then make image-to-image
prediction. Although numerous methods have been proposed
to significantly improve SOD [13]–[30], it still remains a
challenge to predict accurate saliency maps for natural images,
especially for images with complicated scenarios.

Multi-scale learning, the effectiveness of which has been
widely proven in the computer vision community [31]–[36],
plays an essential role in CNN-based SOD for the recognition
of objects with i) various scales in different natural images and
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ii) various aspect ratios of different object-parts in the same
image. It is widely known that CNNs naturally achieve multi-
scale learning by representing high-level semantic information
at the top sides and low-level fine details at the bottom
sides. Since the encoder-decoder architecture has the ability to
take complementary use of multi-scale features from multiple
CNN levels, encoder-decoder networks have dominated this
field [22]–[30], [37]–[49]. The encoder is usually the existing
pre-trained image classification models, e.g., VGG [50] and
ResNet [51], while most efforts are put on the design of
the decoder by exploring various effective connections for
combining multi-scale features [23], [40], [52]–[54].

Despite the great success brought about by encoder-decoder
networks [28]–[30], [37]–[48], the natural multi-scale learning
of CNNs is limited, because only several CNN sides are used
for feature decoding while the scales and shapes of real-world
objects are uncertain. To enrich multi-scale features, it is a
good choice to connect atrous convolutions [55] with various
dilation rates. A typical module using atrous convolutions is
the Atrous Spatial Pyramid Pooling (ASPP) module [32] that
is originally proposed for semantic segmentation. ASPP aggre-
gates the features obtained from multiple atrous convolution
branches with various dilation rates so that it can enlarge the
receptive field to incorporate multi-scale contextual informa-
tion without sacrificing spatial resolution. Current state-of-the-
art saliency methods still rely on the ASPP module [32] for
better multi-scale learning [17], [40], [56]–[59].

However, ASPP [32] suffers from an obvious limitation,
which may affect its ability for feature representation. Specif-
ically, ASPP directly adds up convolutional features of mul-
tiple scales by viewing all scales as equally important. The
equal importance may be an improper assumption, because
i) different input images and different positions may have
different preferences for multi-scale features due to the scale
varieties in object/object-parts, and ii) different network layers
may have different preferences for multi-scale features due to
the intrinsic CNN properties. Therefore, directly adding up
multi-scale features without selection may lead to suboptimal
representation and introduce unnecessary noises.

To address the above problem, we note that the attention
mechanism, which is inspired by the human visual system
[60], [61], can be used to enhance the necessary activation
and suppress the noisy activation of CNN feature maps.
However, there are some obvious limitations in existing at-
tention mechanisms [62]–[65]. First, they usually squeeze
spatial/channel information directly through pooling opera-
tions when deriving channel/spatial attention, causing seri-
ous information loss. Second, they usually compute channel
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and spatial attention separately, ignoring the interrelationship
between two kinds of attention. Third, they usually enhance
the feature map using sequential channel and spatial attention
rather than modeling 3D attention directly. To this end, we
propose a Cubic Information-Embedding Attention (CIEA)
module. CIEA first introduces two attention sub-modules,
i.e., Spatial-Embedding Channel Attention (SECA) and
Channel-Embedding Spatial Attention (CESA), which can
not only learn channel and spatial attention but also embed
the information from one dimension into the attention map of
the other dimension. In this way, the learned channel/spatial
attention can encode the whole input feature map without
information loss. The complementary spatial/channel informa-
tion can make channel/spatial attention have a global view
for the input feature map, respectively. Then, CIEA combines
channel and spatial attention into a 3D attention map to learn
a weight for each position in the 3D feature map, unlike the
previous separate usage of channel and spatial attention.

With CIEA incorporated, we propose the Attentive Atrous
Spatial Pyramid Pooling (A2SPP) module. By adding a
CIEA module to each branch of the original ASPP, the
resulting A2SPP can automatically enhance essential scales
and suppress noisy scales for each 3D position. Such a
way of feature scale aggregation improves the capability of
multi-scale representation. Moreover, A2SPP adds an attentive
residual branch to enrich multi-scale features. Using A2SPP
and CIEA as basic modules, we build a simple encoder-
decoder network, i.e., A2SPPNet, for SOD. Specifically, we
place A2SPP in the partial top sides of the decoder to learn
multi-scale high-level semantic features. For other bottom
sides, we use CIEA to further refine the local information
because it is unnecessary to perform multi-scale learning for
low-level fine-grained features. We also introduce a Semantic
Guidance Learning (SGL) technique to utilize high-level
semantic information for guiding the learning of the decoder.

Extensive experiments on six challenging datasets suggest
that the proposed A2SPP is more effective than the traditional
ASPP, demonstrating that the attention mechanism CIEA is
effective in improving multi-scale representation learning. In
addition, A2SPPNet favorably outperforms existing state-of-
the-art SOD methods in terms of popular evaluation metrics.
By predicting better saliency maps, A2SPPNet would be useful
for many real-world applications. For example, it can be
directly used to improve mobile phone photography [27] and
human-robot interaction [66], [67]. Moreover, A2SPPNet can
also be viewed as a pre-processing technique and thus has
the potential to improve many other real-world applications
such as image/video compression [68], [69], content-based
image retrieval and image collection browsing [70]–[73],
photo collage/media re-targeting/cropping/thumbnailing [74]–
[76], as well as the applications mentioned at the beginning
of this introduction section.

The main contributions of this paper include the following:

• We propose the A2SPP module that adopts a CIEA
module at each branch of ASPP [32] to achieve an
automatic selection of feature scales for better multi-scale
learning.

• We design the CIEA module to learn the 3D attention
map, which consists of SECA and CESA sub-modules,
which introduce spatial and channel information depen-
dencies to channel and spatial attention calculations,
respectively.

• We build a simple A2SPPNet using the proposed A2SPP
and CIEA modules, which achieves state-of-the-art per-
formance for SOD.

II. RELATED WORK

A. Salient Object Detection
Early SOD methods heavily rely on hand-crafted features

[1]–[3] and heuristic priors such as color contrast [1], center
prior [2], and background prior [3]. Nevertheless, hand-craft
features and priors can hardly capture high-level semantic
information which is important to locate salient objects es-
pecially in complicated scenes.

Recently, due to the powerful representation capability of
CNNs, CNN-based saliency detectors have dominated this
field and the accuracy has been remarkably boosted [13]–
[30], [37]–[44], [77]–[88]. It is well accepted that the high-
level semantic information extracted at the top CNN layers can
better locate the coarse positions of salient objects, while the
low-level information extracted at the bottom layers can refine
the details (e.g., object boundaries) of salient objects. Both the
high-level and low-level information is important to accurately
segment salient objects [27], [52]. Therefore, most existing
CNN-based methods focus on aggregating multi-level and
multi-scale features by designing effective decoders [25]–[30],
[37]–[49], [89], [90]. For example, Zhang et al. [40] designed
a bi-directional structure to pass messages between multi-
level features controlled by a gate function. Wang et al. [91]
proposed a pyramid attention structure that can focus more on
salient regions while exploiting multi-scale information. Liu
et al. [89] explored the pooling operation for SOD guided
by a designed global guidance module. They also designed a
feature aggregation module to make the high-level semantic
information well fused with low-level features. Instead of
exploring the fusion of multi-level features extracted from the
encoder, we aim at how to enrich the multi-scale learning of
SOD networks, because SOD heavily depends on multi-scale
learning for locating the position and segmenting the details
of salient objects with various scales.

Pang et al. [92] proposed MINet to enrich multi-scale learn-
ing for SOD. They first used an aggregate interaction module
to integrate the features from adjacent network sides. Then,
they applied a self-interaction module at each side to learn
multi-scale features, where the input feature is downsampled
by a factor of 2 and then processed, communicating with the
original input feature. We believe that such a self-interaction
module is limited in multi-scale learning, as only two scales
(i.e., 1 and 1/2) are explored. In this paper, we propose A2SPP
to explore general multi-scale learning under multiple scales
in an intuitive manner.

B. Atrous Spatial Pyramid Pooling
Atrous Spatial Pyramid Pooling (ASPP) [32] is originally

proposed for semantic segmentation. ASPP adopts four par-
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Fig. 1. Left: network architecture of the proposed A2SPPNet with the VGG16 backbone [50]. Right: structure of the proposed A2SPP module.

allel atrous 3 × 3 convolutions [55] with different dilation
rates (i.e., rates = (6, 12, 18, 24)) on top of the encoder for
capturing multi-scale information. Then, Chen et al. [93] found
that when the dilation rate gets larger, the 3 × 3 convolution
filter degenerates to a 1 × 1 filter as only the center weight
is effective. Hence they replaced the (3 × 3, rates = 24)
convolution with a 1×1 convolution. They also added a global
average pooling branch to extract image-level features.

For SOD, many studies [40], [56]–[59], [89] use ASPP or its
variants for extracting multi-scale features without sacrificing
spatial resolution. For example, Liu et al. [89] proposed
a feature aggregation module (FAM) to replace the atrous
convolutions [55] in ASPP with successive pooling and vanilla
convolutions. Zhao et al. [59] and Zhang et al. [40] proposed
CPFE and MCFE modules by tuning the dilation rates of
ASPP. Zhao et al. [59] used the channel attention to enhance
the features extracted by their CPFE module, but this is
orthogonal to our goal that aims at automatically learning each
point’s preference to different feature scales. To this end, we
adopt a CIEA module at each branch of the A2SPP module
for an automatic scale selection.

C. Attention Mechanisms

The attention mechanism is first found in human visual
system [60], [61]. It enhances essential information and filters
out noisy information. Similar ideas are applied to neural
networks and have achieved successes in many tasks such as
scene recognition [94] and and image captioning [95]. The
recent development of SOD has also benefited from attention
mechanisms [30], [37], [40], [59], [91]. In general, attention
mechanisms can be categorized into two classes: squeeze-and-
excitation (SE) style and non-local style.

SE style recalibrates the channel- or spatial-wise feature re-
sponses by rescaling different channels or spatial positions. He
et al. [62] proposed squeeze-and-excitation networks, which
first squeezes global spatial information into a channel descrip-
tor and then maps the channel descriptor to a set of channel

weights for recalibrating the importance of different channels.
Inspired by this, Woo et al. [63] introduced both channel
and spatial attention mechanisms to process features along
the channel and spatial dimensions, respectively. However, all
these SE-style methods obtain channel and spatial attention by
squeezing the feature map along spatial or channel dimension,
which is not effective enough for complete context modeling.
Moreover, their channel and spatial attention is computed sep-
arately, ignoring the interactions between channel and spatial
dimensions.

Non-local style actually learns query-independent attention
maps for each query position to model pixel-level pairwise
relations. a weighted sum of the features at all positions for
capturing long-range position interactions. Based on NLNet
[25], many works [96], [97] focus on decreasing the computa-
tion and GPU memory consumption brought by the matrix
multiplications of the standard non-local module. Overall,
non-local-style methods aim at modeling pixel-level pairwise
relations via self-attention mechanisms. However, they all
share an essential problem, i.e., the prohibitive computational
cost and vast GPU memory occupation hinder its usage in
applications.

III. METHODOLOGY

A. Overall Framework

As shown in Fig. 1, the proposed salient object detector,
A2SPPNet, is an encoder-decoder network. For the encoder,
A2SPPNet uses the typical VGG16 [50] or ResNet50 [51] as
its encoder. Here, we take VGG16 as an example to describe
our A2SPPNet, while the ResNet50-based A2SPPNet can be
easily derived. We make two modifications to VGG16: (i)
we remove the final fully-connected layers of VGG16 to
serve as an FCN [12] for image-to-image translation; (ii) we
remove the last pooling layer, i.e., only remaining four pooling
layers. We focus on designing an effective decoder which can
be viewed as a top-down generation path, and each block
originates from the side output of the corresponding encoder
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side and the preceding decoder side. The key of the decoder
is multi-scale learning for extracting and aggregating multi-
scale features in an effective way. To achieve this goal, we
design a novel module, Attentive Atrous Spatial Pyramid
Pooling (A2SPP), and place it in the partial top sides of
the decoder. As displayed in Fig. 1 and Section III-B, the
A2SPP module is an improved version of ASPP [32], [93].
A2SPP aims at solving the ASPP’s improper assumption that
all feature scales are of equal importance, by learning attention
for the feature scale selection using the Cubic Information-
Embedding Attention (CIEA) module. The structure of the
CIEA module is illustrated in Fig. 2, which will be introduced
in Section III-C.

As we know, the top layers of CNNs learn high-level
semantic abstraction of the input image, which is essential for
locating salient objects. In contrast, the bottom layers contain
low-level fine-grained details, which are useful for refining
object details [25]–[30], [37]–[49]. A2SPP inherits the natural
property of ASPP to enhance the high-level semantic features
through multi-scale learning [32], [93], [98]. Hence, we place
an A2SPP module at each of the top two decoder sides. For
the bottom sides, on one hand, it is unnecessary to adopt
A2SPP because the bottom layers aim at learning low-level
fine-grained details. On the other hand, it is meaningless to
apply A2SPP at the bottom sides, because ASPP is originally
designed to process small feature maps at the top sides
and thus unsuitable to process large feature maps at the
bottom sides [32], [93], [98]. Hence, we just place a CIEA
module at each of the bottom three decoder sides for feature
enhancement. Our experiments in Section IV-C1e demonstrate
the advantage of such a two-part decoder.

We also follow the idea in PoolNet [89] to use high-level
semantic features for guiding the learning of each decoder
side, namely Semantic Guidance Learning (SGL). Specif-
ically, we connect an ASPP module on top of the encoder.
The output is transformed into feature maps with 32, 16, 8, 4,
and 2 channels by 1×1 convolutions, which are fed into each
decoder side (before A2SPP or CIEA) from top to bottom,
respectively. This output is also transformed into an 8-channel
feature map that is concatenated with the feature map at the
bottom decoder side for final saliency prediction, as shown in
Fig. 1. The above ASPP module consists of four branches: a
1× 1 convolution, two atrous 3× 3 convolutions with dilation
rates of 3 and 6, and the global average pooling. Each branch
generates a 256-channel feature map, and we concatenate the
outputs of four branches to produce multi-scale features. Note
that we adopt traditional ASPP rather than our A2SPP in
SGL. As we know, different network sides prefer different
feature scales [99], [100]. A2SPP adds feature scale selection
to ASPP, where it is difficult for a specific selection to satisfy
all network sides. In other words, the feature scale selection in
A2SPP may be unnecessary because the preferable scales of
different sides are uncertain. In Section IV-C4c, we empirically
verify this hypothesis.

The feature map obtained from each A2SPP or CIEA
module is fed into a residual block containing two sequen-
tial 3 × 3 convolution layers with batch normalization and
nonlinearization. The output channels from top to bottom are

128, 128, 64, 16, and 16. Then, a 1 × 1 convolution with a
single output channel is applied to the output feature map of
each decoder side. The sigmoid activation function is followed
to predict the saliency probability map whose values range
from 0 to 1. The ground truth is imposed to supervise these
intermediate saliency predictions for deep supervision which
has been proved to be effective for SOD [23], [28], [37], [39],
[42], [44], [54], [89], [91], [101]. Similarly, we derive the final
saliency map from the bottom decoder side, as shown in Fig. 1.
This final saliency map is also supervised by the ground truth
in the training phase and serves as the output of A2SPPNet in
the test phase.

The proposed A2SPPNet is trained end-to-end using the
standard binary cross entropy loss (BCE). The total loss can
be calculated as

L = BCE(P,G) + λ

5∑
i=1

BCE(Pi,G), (1)

where G denotes the ground-truth saliency map. P denotes the
final predicted saliency map, and Pi is the predicted saliency
map at the i-th decoder side. λ represents the weighting scalar
for loss balance. In this paper, we empirically set λ to 0.4 as
suggested by [33], [102].

B. Attentive Atrous Spatial Pyramid Pooling

The traditional ASPP module [32], [93] uses several atrous
convolutions to process deep features in parallel. Since these
atrous convolutions have different dilation rates, ASPP can
extract multi-scale features. ASPP assumes that all parallel
branches are of equal importance, and ASPP sums the features
from all branches directly without selection. However, different
input images, different positions, and different network layers
would have different preferences for feature scales because
of the various scales of objects/parts and the diversity of
multi-scale deep features. Each position in each feature map
should have the ability to learn feature scales that it prefers,
through which necessary feature scales should be emphasized
and redundant feature scales should be suppressed. Therefore,
it is improper for ASPP to view all feature scales as equally
important.

To address this problem, we improve ASPP to A2SPP. The
structure of A2SPP is illustrated in Fig. 1. We add a novel
CIEA module after the atrous convolution of each A2SPP
branch. With a 3D atrous-convolved feature map as input,
the CIEA module learns a 3D attention map with the same
size as the input. For each branch, the attention value at each
position represents the importance of the corresponding feature
scale for this position. We multiply the attention map and the
atrous-convolved feature map in an element-wise way. The
resulting feature maps of all branches are concatenated. In
this way, each position in the 3D feature space automatically
learns its specific linear combination of all feature scales. With
this automatic scale selection, the output feature map learns a
better multi-scale feature representation.

Specifically, we adopt a 1 × 1 convolution and a varying
number of atrous 3 × 3 convolutions with different dilation
rates according to the spatial resolutions of feature maps from
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different layers. For example, the output stride is 16 for the
fifth convolution layer after four pooling layers, we use two
atrous 3 × 3 convolutions with dilation rates of (3, 6). For
the fourth convolutional layer, we use three atrous 3 × 3
convolutions with dilation rates of (3, 6, 9). The reason for this
design is that when a excessively large dilation rate is applied
to a small feature map, the number of valid convolution filter
weights that do not act upon the padded zeros becomes small
[93], to make the dilation rates be in accordance with the size
of the feature map. Moreover, since global features have been
proved to be essential for SOD [1], [25], [28], A2SPP also has
a parallel branch that contains a global average pooling layer
and a CIEA module, which is designed to extract image-level
features. In addition, inspired by the effectiveness of residual
connections [51], [94], we add an attentive residual shortcut
branch to A2SPP by introducing another CIEA module to
process the input feature map.

We concatenate the feature maps from all parallel branches.
The number of channels for all A2SPP branches at both
the fifth and fourth blocks is 128. After concatenation, we
change the fused feature maps to 128 channels again using a
3×3 convolution. Since we employ several attention modules
in parallel, multiplying by factors that are within the range
of (0, 1) can weaken the activation, leading to vanishing
gradients. Hence, we add a residual connection [51] at the
end of A2SPP to facilitate gradient propagation, followed by
a 1× 1 convolution layer to obtain the final feature map.

C. Cubic Information-Embedding Attention

As discussed in Section II-C, there are three obvious limi-
tations in existing attention mechanisms [30], [37], [57], [59],
[91]: i) they squeeze the spatial/channel information directly

for the channel/spatial attention learning, and as a result, there
is much information loss for complete context modeling; ii)
they learn channel and spatial attention separately, ignoring
the interactions between the channel and spatial dimensions;
iii) previous channel/spatial attention mechanisms cannot learn
the attention value for each point of the 3D feature map.

To overcome the above limitations, we propose the CIEA
module to generate a 3D attention map with the same size
as the input feature map (problem iii)). When computing the
attention for one dimension, CIEA does not squeeze the other
dimension and thus avoids the information loss in previous
methods (problem i)). In addition, CIEA can directly model the
channel- and spatial-wise dependency simultaneously rather
than modeling the channel and spatial attention separately, as
before (problem ii)). The detailed architecture of the CIEA
module is illustrated in Fig. 2. Given an input feature map X ∈
RC×H×W , CIEA computes a cubic attention map CIEA(X) ∈
RC×H×W , where C, H , and W represent the channel, height,
and width of the input feature map, respectively. The enhanced
feature Y is computed as

Y = X⊗ CIEA(X) +X, (2)

where ⊗ denotes element-wise multiplication. A residual
connection [51] is adopted to facilitate gradient flow.

CIEA consists of two information embedding atten-
tion mechanisms, i.e., Spatial-Embedding Channel Atten-
tion (SECA) and Channel-Embedding Spatial Attention
(CESA). The SECA branch not only learns the dependencies
among feature channels but also embeds the spatial infor-
mation to generate channel attention SECA(X) ∈ RC×1×1.
Similarly, the CESA branch attempts to encode the channel
information into spatial dimensions to learn spatial attention
CESA(X) ∈ R1×H×W . We aggregate these two branches to
obtain the cubic attention map:

CIEA(X) = SECA(X)⊗ CESA(X), (3)

where SECA(X) and CESA(X) are replicated into the in-
put size of RC×H×W before multiplication. For combining
SECA(X) and CESA(X), the element-wise multiplication
in Eq. (3) can be replaced with summation. Both combining
methods achieve similar performance, and the multiplication
performs slightly better, as shown in Section IV-C4b. Hence,
we empirically choose element-wise multiplication.

1) Spatial-Embedding Channel Attention: The channel at-
tention mechanism exploits the inter-channel relationship for
learning “what” to focus on or suppress. As mentioned above,
traditional channel attention mechanisms usually obtain chan-
nel vectors by squeezing the spatial information directly using
the global average pooling (GAP) or global max pooling
(GMP) on the input feature map. Intuitively, a single average
or max value cannot characterize the whole spatial dimension
exactly. Hence, such crude pooling would lead to much infor-
mation loss, making the resulting channel attention suboptimal
in modeling the global contextual information. Therefore,
the proposed SECA absorbs spatial information into channel
attention in a non-squeeze way for global context modeling.

As shown in Fig. 2, we first feed the input feature map
X into two 1 × 1 convolution layers (with nonlinearization)
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to generate two new feature maps, both of which have the
size of RC×H×W . Then, one of them is reshaped to Fc1 ∈
RC×HW . The other is first changed to a 1-channel feature
map by a 1 × 1 convolution (without nonlinearization) and
then, reshaped to Fc2 ∈ RHW×1. Next, we apply softmax to
Fc2 for normalization, i.e., Fc2 = Softmax(Fc2). After that,
we perform a matrix multiplication for Fc1 and Fc2 to obtain
a spatial-embedding matrix Fc, which can be summarized in
the following formulas:

Fc = Fc1 ⊗ Fc2,

Fc ∈ RC×1,Fc1 ∈ RC×HW ,Fc2 ∈ RHW×1.
(4)

Fc is further reshaped to Fc ∈ RC×1×1. Then, we connect
three 1 × 1 convolution layers to process Fc. To reduce the
number of parameters, we set the number of output channels
of the first 1 × 1 convolution as C/4, which is returned to
C using the third 1 × 1 convolution. Finally, the sigmoid
function is applied in SECA. In summary, we can formulate
the computation of SECA as

SECA(X) = σ(Conv1×1(Conv1×1(Conv1×1(F
c)))),

SECA(X) ∈ RC×1×1,
(5)

where σ(·) is the sigmoid function.
Next, let us discuss how SECA embeds the spatial infor-

mation into channel attention. As shown in Eq. (4), Fc is
generated by the matrix multiplication of Fc1 and Fc2. In this
way, the response at each position of Fc is computed by the
sum of the product of all position pairs in Fc1 and Fc2. In con-
trast to previous methods that adopt GAP or GMP to squeeze
the spatial information directly, SECA abstracts the spatial
information in a learning way. Therefore, spatial information
can contribute to channel attention through learning rather than
through a predefined average or maximum operation.

2) Channel-Embedding Spatial Attention: The spatial at-
tention mechanism aims at exploiting the relationships among
spatial positions for learning “where” to focus on or suppress.
Given an input feature map X ∈ RC×H×W , traditional spatial
attention mechanisms squeeze the channel information directly
by using a convolution for reducing the number of channels to
1. We believe that such a direct squeeze is insufficient to make
good use of channel information. More importantly, such a
direct squeeze can capture only local information, while global
context modeling has been proved to be essential for SOD [1],
[19], [25], [28], [41], [77]. To address this aim, we propose
CESA to embed channel information into spatial attention for
global context modeling.

The pipeline of CESA is shown in Fig. 2. We first feed
the input X into two 1 × 1 convolution layers with non-
linearization, respectively. The generated feature maps are
Fs1 ∈ RC×H×W and Fs2 ∈ RC×H×W . Then, we reshape
Fs1 to Fs1

′ ∈ RC×HW . For Fs2, we apply GAP and GMP
for capturing global contextual information. A multi-layer
perceptron (MLP) with two layers is adopted to process the
results of GAP and GMP, respectively. The MLP’s hidden
layer has C/4 output neurons for reducing the number of
parameters, and the output layer has C neurons. Then, we

integrate these two feature vectors using the element-wise sum
and a 1× 1 convolution. This can be formulated as

Fs2
′ = Conv1×1(MLP(GAP(Fs2))+MLP(GMP(Fs2))), (6)

where we have Fs2
′ ∈ RC×1×1. Fs2

′ can be further reshaped
to RC×1. The softmax function is used to normalize Fs2

′ into
the value range of [0, 1], i.e., Fs2

′ = σ(Fs2
′).

We continue by multiplying Fs1
′ and Fs2

′ to allow the
channel information to be embedded into spatial attention. This
can be written as

Fs3 = Fs1
′ ⊗ Fs2

′,

Fs3 ∈ RHW×1,Fs1
′ ∈ RHW×C ,Fs2

′ ∈ RC×1.
(7)

Then, Fs3 is reshaped to Fs3 ∈ R1×H×W . Moreover, to enhance
the spatial information, we also apply the GAP and GMP along
the channel dimension of the input X to squeeze its number
of channels to 1. Hence, we obtain two 1-channel feature
maps FsGAP ∈ R1×H×W and FsGMP ∈ R1×H×W . Fs3, FsGAP,
and FsGMP are concatenated, followed by a 7× 7 convolution
with 1-channel output for feature fusion. Finally, the sigmoid
function is applied to obtain the final spatial attention. In
summary, we can formulate these operations as

CESA(X) = σ(Conv7×7(Concat(F
s
3,F

s
GAP,F

s
GMP))), (8)

where we have CESA(X) ∈ R1×H×W . Note that we do not
design similar operations (denoted as FcGAP ∈ RC×1×1 and
FcGMP ∈ RC×1×1) for SECA. SECA adopts convolutions to
squeeze the channel dimension for deriving Fc2, which means
that the dimension squeeze is accomplished in a learnable
manner. In contrast, CESA can only adopt global pooling
to squeeze the spatial dimension for deriving Fs2

′, where the
dimension squeeze is accomplished in a fixed (non-learnable)
manner. The fixed dimension squeeze would make CESA
sacrifice a substantial amount of spatial information, and thus,
we add FsGAP and FsGMP to supplement Fs3 by more spatial
information. However, SECA does not need similar operations
due to its learnable dimension squeeze. Our experiments in
Section IV-C4a also demonstrate our hypothesis: FsGAP and
FsGMP can bring about improvement to the performance, while
FcGAP and FcGMP cannot.

Next, we discuss how CESA embeds channel information
into spatial attention. Through Eq. (6), we extract a channel
global context vector. Through Eq. (7), the response at each
position of Fs3 is computed by the sum of the product of
all channel pairs in Fs1

′ and Fs2
′. In this way, each channel

feature vector is absorbed using a dense correlation with a
global view. Therefore, the channel information is embedded
into spatial attention rather than the previous simple reduction
of the number of channels through convolutions.

IV. EXPERIMENTS

A. Experimental Setup

1) Implementation Details: The proposed method is im-
plemented using the PyTorch framework. The backbone net-
work, i.e., VGG16 [50], is initialized using the ImageNet-
pretrained model. We adopt the Adam optimizer to optimize
the network. The learning rate policy is poly, in which



IEEE TRANSACTIONS ON MULTIMEDIA 7

TABLE I
COMPARISON BETWEEN THE PROPOSED A2SPPNET AND 32 STATE-OF-THE-ART METHODS IN TERMS OF Fβ (↑), MAE (↓), Fwβ (↑), AND Sm (↑) ON SIX

DATASETS. THE BEST RESULT OF EACH COLUMN IS HIGHLIGHTED IN BOLD.

SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-test# Methods
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

1 MDF [78] 0.764 0.182 - - 0.807 0.138 0.680 0.115 0.669 0.128 0.707 0.114
2 LEGS [19] 0.733 0.194 0.766 0.119 0.830 0.118 0.668 0.134 0.663 0.126 0.652 0.137
3 ELD [20] 0.758 0.154 0.837 0.074 0.866 0.081 0.700 0.092 0.726 0.095 0.727 0.092
4 RFCN [21] 0.802 0.161 0.892 0.080 0.896 0.097 0.738 0.095 0.754 0.100 0.782 0.089
5 DCL [22] 0.831 0.131 0.892 0.063 0.895 0.080 0.733 0.095 0.747 0.096 0.785 0.082
6 DHS [44] 0.822 0.128 0.889 0.053 0.903 0.062 - - 0.752 0.082 0.807 0.066
7 NLDF [25] 0.837 0.123 0.902 0.048 0.902 0.066 0.753 0.080 0.762 0.080 0.806 0.065
8 Amulet [23] 0.795 0.144 0.897 0.051 0.913 0.061 0.743 0.098 0.755 0.094 0.778 0.085
9 UCF [24] 0.805 0.148 0.888 0.062 0.901 0.071 0.730 0.120 0.758 0.112 0.772 0.112

10 SRM [26] 0.840 0.126 0.906 0.046 0.914 0.056 0.769 0.069 0.778 0.077 0.826 0.059
11 PiCA [28] 0.836 0.102 0.916 0.042 0.923 0.049 0.766 0.068 0.783 0.083 0.837 0.054
12 BRN [41] 0.843 0.103 0.910 0.036 0.919 0.043 0.774 0.062 0.769 0.076 0.827 0.050
13 C2S [29] 0.819 0.122 0.898 0.046 0.907 0.057 0.759 0.072 0.775 0.083 0.811 0.062
14 RAS [30] 0.847 0.123 0.913 0.045 0.916 0.058 0.785 0.063 0.772 0.075 0.831 0.059
15 DSS [27] 0.842 0.122 0.913 0.041 0.915 0.056 0.774 0.066 0.770 0.074 0.827 0.056
16 PAGE-Net [91] 0.837 0.110 0.918 0.037 0.927 0.046 0.791 0.062 0.766 0.080 0.838 0.052
17 AFNet [101] 0.848 0.108 0.921 0.036 0.930 0.045 0.784 0.057 0.791 0.072 0.857 0.046
18 DUCRF [79] 0.836 0.121 0.920 0.040 0.924 0.052 0.802 0.057 0.762 0.080 0.833 0.059
19 CPD [53] 0.848 0.113 0.924 0.033 0.930 0.044 0.794 0.057 0.795 0.068 0.861 0.043
20 PoolNet [89] 0.863 0.111 0.925 0.037 0.939 0.045 0.791 0.060 0.800 0.068 0.866 0.043
21 HRSOD [56] 0.819 0.138 0.912 0.042 0.916 0.058 0.752 0.066 0.784 0.068 0.836 0.051

V
G

G
16

A2SPPNet 0.865 0.100 0.940 0.027 0.946 0.033 0.792 0.055 0.808 0.066 0.882 0.038
22 BASNet [80] 0.849 0.112 0.928 0.032 0.938 0.040 0.805 0.056 0.783 0.073 0.859 0.048
23 EGNet [81] 0.859 0.110 0.928 0.034 0.938 0.044 0.794 0.056 0.800 0.070 0.870 0.044
24 F3Net [82] 0.857 0.104 0.929 0.032 0.940 0.040 0.802 0.059 0.795 0.069 0.859 0.044
25 GCPANet [77] 0.842 0.100 0.935 0.032 0.942 0.037 0.796 0.057 0.803 0.066 0.872 0.038
26 LDF [83] 0.863 0.101 0.935 0.028 0.939 0.041 0.803 0.057 0.815 0.064 0.886 0.039
27 ITSD [84] 0.867 0.098 0.926 0.035 0.939 0.040 0.802 0.063 0.806 0.068 0.875 0.042
28 MINet [92] 0.842 0.099 0.929 0.032 0.937 0.040 0.780 0.057 0.808 0.066 0.870 0.040
29 GateNet [85] 0.851 0.108 0.927 0.036 0.933 0.045 0.784 0.061 0.808 0.068 0.866 0.045
30 PA-KRN [86] 0.870 0.095 0.938 0.028 0.943 0.038 0.806 0.054 0.813 0.064 0.885 0.037
31 TSPOANet [87] 0.848 0.116 0.918 0.039 0.931 0.047 0.778 0.061 - - 0.847 0.049
32 FCSOD [88] 0.825 0.119 0.897 0.039 0.910 0.047 0.708 0.067 0.773 0.071 0.819 0.045

R
es

N
et

50

A2SPPNet 0.872 0.094 0.941 0.025 0.954 0.028 0.798 0.053 0.808 0.064 0.886 0.034
SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-test# Methods

Fwβ Sm Fwβ Sm Fwβ Sm Fwβ Sm Fwβ Sm Fwβ Sm
1 MDF [78] 0.528 0.655 - - 0.619 0.764 0.494 0.714 0.508 0.718 0.507 0.729
2 LEGS [19] 0.550 0.662 0.616 0.743 0.692 0.788 0.523 0.713 0.538 0.721 0.510 0.697
3 ELD [20] 0.634 0.707 0.743 0.820 0.783 0.841 0.593 0.750 0.621 0.764 0.607 0.733
4 RFCN [21] 0.591 0.722 0.707 0.858 0.725 0.860 0.562 0.774 0.592 0.793 0.586 0.793
5 DCL [22] 0.669 0.763 0.770 0.871 0.782 0.873 0.584 0.762 0.624 0.794 0.632 0.803
6 DHS [44] 0.685 0.752 0.816 0.870 0.837 0.884 - - 0.666 0.802 0.705 0.820
7 NLDF [25] 0.708 0.759 0.838 0.879 0.835 0.875 0.634 0.770 0.676 0.801 0.710 0.817
8 Amulet [23] 0.674 0.755 0.817 0.886 0.839 0.894 0.626 0.781 0.650 0.796 0.657 0.804
9 UCF [24] 0.673 0.763 0.779 0.875 0.805 0.884 0.574 0.760 0.613 0.785 0.595 0.782

10 SRM [26] 0.670 0.739 0.835 0.887 0.849 0.894 0.658 0.798 0.684 0.818 0.721 0.836
11 PiCA [28] 0.721 0.787 0.847 0.905 0.862 0.914 0.691 0.826 0.688 0.823 0.745 0.860
12 BRN [41] 0.670 0.768 0.835 0.895 0.849 0.902 0.658 0.806 0.684 0.813 0.721 0.842
13 C2S [29] 0.700 0.757 0.835 0.889 0.849 0.896 0.663 0.799 0.685 0.812 0.717 0.832
14 RAS [30] 0.718 0.761 0.850 0.889 0.855 0.894 0.695 0.812 0.691 0.813 0.739 0.839
15 DSS [27] 0.711 0.747 0.862 0.881 0.864 0.884 0.688 0.790 0.702 0.805 0.752 0.826
16 PAGE-Net [91] 0.721 0.769 0.865 0.903 0.879 0.912 0.722 0.825 0.698 0.815 0.768 0.854
17 AFNet [101] 0.726 0.773 0.869 0.905 0.880 0.913 0.717 0.826 0.719 0.829 0.784 0.867
18 DUCRF [79] 0.697 0.760 0.855 0.903 0.858 0.907 0.706 0.821 0.663 0.801 0.723 0.836
19 CPD [53] 0.718 0.765 0.879 0.904 0.888 0.910 0.715 0.818 0.730 0.831 0.799 0.866
20 PoolNet [89] 0.731 0.781 0.865 0.908 0.880 0.915 0.710 0.829 0.724 0.839 0.783 0.875
21 HRSOD [56] 0.622 0.702 0.851 0.882 0.853 0.883 0.645 0.772 0.713 0.820 0.746 0.830

V
G

G
16

A2SPPNet 0.753 0.792 0.911 0.922 0.915 0.932 0.742 0.834 0.758 0.842 0.835 0.888
22 BASNet [80] 0.728 0.766 0.889 0.909 0.898 0.916 0.741 0.836 0.721 0.823 0.802 0.865
23 EGNet [81] 0.736 0.782 0.876 0.912 0.886 0.919 0.727 0.836 0.727 0.836 0.796 0.878
24 F3Net [82] 0.742 0.785 0.883 0.915 0.900 0.924 0.710 0.823 0.726 0.835 0.790 0.872
25 GCPANet [77] 0.731 0.776 0.889 0.918 0.900 0.922 0.734 0.830 0.732 0.839 0.817 0.884
26 LDF [83] 0.754 0.787 0.891 0.918 0.890 0.915 0.715 0.826 0.727 0.835 0.807 0.879
27 ITSD [84] 0.764 0.791 0.881 0.906 0.897 0.914 0.734 0.829 0.739 0.836 0.813 0.887
28 MINet [92] 0.740 0.781 0.889 0.912 0.899 0.919 0.719 0.822 0.742 0.838 0.812 0.874
29 GateNet [85] 0.729 0.774 0.872 0.910 0.881 0.917 0.703 0.821 0.733 0.838 0.785 0.870
30 PA-KRN [86] 0.765 0.785 0.903 0.920 0.901 0.916 0.752 0.830 0.752 0.839 0.827 0.884
31 TSPOANet [87] 0.718 0.774 0.862 0.907 0.876 0.913 0.697 0.823 - - 0.767 0.865
32 FCSOD [88] 0.668 0.721 0.856 0.872 0.868 0.879 0.618 0.745 0.719 0.809 0.756 0.822

R
es

N
et

50

A2SPPNet 0.758 0.798 0.914 0.924 0.929 0.933 0.752 0.838 0.763 0.844 0.846 0.891
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TABLE II
COMPARISON BETWEEN THE PROPOSED A2SPPNET AND 32

STATE-OF-THE-ART METHODS IN TERMS OF Em (↑) ON SIX DATASETS.

Methods SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-test
MDF [78] 0.607 - 0.535 0.442 0.470 0.433
LEGS [19] 0.724 0.776 0.814 0.652 0.686 0.670
ELD [20] 0.742 0.754 0.792 0.641 0.661 0.650
RFCN [21] 0.267 0.216 0.241 0.224 0.228 0.218
DCL [22] 0.527 0.448 0.464 0.461 0.429 0.408
DHS [44] 0.771 0.802 0.808 - 0.672 0.700
NLDF [25] 0.820 0.885 0.881 0.735 0.740 0.766
Amulet [23] 0.608 0.710 0.719 0.542 0.594 0.558
UCF [24] 0.565 0.577 0.613 0.416 0.420 0.367
SRM [26] 0.797 0.801 0.812 0.677 0.661 0.691
PiCA [28] 0.696 0.668 0.688 0.580 0.566 0.589
BRN [41] 0.824 0.938 0.936 0.843 0.823 0.886
C2S [29] 0.814 0.843 0.860 0.730 0.721 0.752
RAS [30] 0.803 0.851 0.858 0.757 0.727 0.756
DSS [27] 0.832 0.938 0.928 0.836 0.815 0.872
PAGE-Net [91] 0.800 0.851 0.866 0.777 0.739 0.791
AFNet [101] 0.814 0.839 0.849 0.760 0.735 0.767
DUCRF [79] 0.751 0.754 0.761 0.803 0.646 0.658
CPD [53] 0.843 0.915 0.921 0.830 0.794 0.860
PoolNet [89] 0.795 0.821 0.823 0.717 0.703 0.739
HRSOD [56] 0.778 0.801 0.826 0.701 0.683 0.717

V
G

G
16

A2SPPNet 0.851 0.954 0.956 0.855 0.846 0.914
BASNet [80] 0.832 0.936 0.938 0.857 0.815 0.883
EGNet [81] 0.806 0.843 0.843 0.736 0.721 0.754
F3Net [82] 0.851 0.895 0.902 0.783 0.769 0.820
GCPANet [77] 0.850 0.915 0.918 0.815 0.799 0.863
LDF [83] 0.827 0.831 0.816 0.712 0.710 0.751
ITSD [84] 0.870 0.927 0.929 0.823 0.809 0.878
MINet [92] 0.844 0.901 0.906 0.790 0.783 0.838
GateNet [85] 0.834 0.856 0.863 0.749 0.748 0.782
PA-KRN [86] 0.850 0.907 0.903 0.772 0.758 0.832
TSPOANet [87] 0.819 0.859 0.869 0.753 - 0.777
FCSOD [88] 0.790 0.936 0.932 0.795 0.836 0.886

R
es

N
et

50

A2SPPNet 0.847 0.955 0.958 0.855 0.854 0.920

the current learning rate equals the base rate multiplied by
(1 − curr iter/max iter)power. We set the initial learning
rate to 1e-4 and the power to 0.9. The weight decay is set
to 1e-4. We train our network for 50 epochs in total with a
batch size of 16. All experiments are performed on a TITAN
Xp GPU.

2) Datasets: Following recent studies [26], [28], [38], [41],
[52]–[54], [56], [59], [89], [101], we utilize the DUTS training
set [103] to train A2SPPNet. The DUTS training set consists
of 10553 images with corresponding pixel-wise saliency an-
notations. For the performance evaluation, we use the DUTS
test set and five other widely used datasets, including SOD
[104], HKU-IS [78], ECSSD [105], DUT-OMRON [106],
and THUR15K [107]. These six test datasets contain 5019,
300, 4447, 1000, 5168, and 6232 natural complicated images,
respectively, with high-quality human labels.

3) Evaluation Criteria: In this paper, we evaluate the
performance of SOD models using four widely used evaluation
metrics, including the max F -measure score Fβ , mean abso-
lute error (MAE), weighted F -measure score Fωβ , structure-
measure Sm, and enhanced alignment-measure Em.

For the computation of max F -measure, we first convert
the predicted saliency maps into binary maps under varying
thresholds in the range of [0, 1]. Then, we compare these
binary maps with the ground truth to compute a series of
precision-recall value pairs. Based on these precision-recall
value pairs, we provide an overall performance evaluation
metric, i.e., F -measure score Fβ , which is the weighted
harmonic mean of the precision and recall. The formula of

the F -measure score is

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
, (9)

where β2 is typically set to 0.3, as in previous work [23], [26]–
[28], [37], [38], [40], [41], [52]–[54], [56], [59], [89], [101],
to emphasize more the precision than the recall. We calculate
Fβ scores under all thresholds and report the best score based
on an optimal threshold.

The MAE metric is used to measure the absolute error
between a saliency map and the corresponding ground truth.
MAE can be computed as

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|P(i, j)−G(i, j)|, (10)

where P and G represent the predicted and ground-truth
saliency maps which are normalized to [0, 1], respectively. H
and W are the image height and width, respectively. P(i, j) /
G(i, j) denotes the saliency score at location (i, j).

Moreover, Margolin et al. [108] proposed the weighted F -
measure score Fωβ , which is defined as

Fωβ =
(1 + β2)× Precisionω × Recallω

β2 × Precisionω +Recallω
, (11)

in which the weighted precision Precisionω and weighted
recall Recallω are defined in [108]. The meaning of β2 is
the same as that in Eq. (9). In addition to the above metrics,
which are based on pixel-wise errors, we also report structure-
measure Sm [109] to simultaneously evaluate region-aware
and object-aware structural similarities. Sm is calculated as

Sm = αSo + (1− α)Sr, (12)

where So and Sr are object-aware and region-aware structural
similarities, respectively. The balance parameter α is set to 0.5
by default. Besides, we also use enhanced alignment-measure
Em, which is designed in the binary map evaluation field to
jointly capture image-level statistics and local pixel matching
information [110].

Other than numerical results, we also perform non-
numerical evaluation to compare our method to baselines,
including F -measure vs. threshold curves (FT curves) and the
precision vs. recall curves (PR curves). FT curves show the F-
measure scores at various thresholds and can thus suggest the
quality of the predicted saliency maps clearly. The PR curves
can summarize the compromise between precision and recall.

B. Performance Comparison

We compare the proposed A2SPPNet with 32 previous state-
of-the-art methods, including MDF [78], LEGS [19], ELD
[20], RFCN [21], DCL [22], DHS [44], NLDF [25], Amulet
[23], UCF [24], SRM [26], PiCA [28], BRN [41], C2S [29],
RAS [30], DSS [27], PAGE-Net [91], AFNet [101], DUCRF
[79], HRSOD [56], CPD [53], BASNet [80], PoolNet [89],
EGNet [81], F3Net [82], GCPANet [77], LDF [83], ITSD
[84], MINet [92], GateNet [85], PA-KRN [86], TSPOANet
[87], and FCSOD [88]. For fair comparisons, the predicted
saliency maps of all of these methods are provided by the
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TABLE III
COMPARISON OF A2SPPNET TO 10 RECENT COMPETITIVE METHODS IN

TERMS OF PARAMETERS, FLOPS, AND RUNTIME. A2SPPNET† AND
A2SPPNET‡ REPRESENT THE PROPOSED A2SPPNET WITH VGG16 AND

RESNET50 BACKBONES, RESPECTIVELY.

Methods Publication #Param (M) FLOPs (G) Time (s)
BASNet [80] CVPR’2019 85.02 508.99 0.091
PoolNet [89] CVPR’2019 66.66 194.27 0.044
EGNet [81] ICCV’2019 105.54 627.75 0.127
F3Net [82] AAAI’2020 24.94 34.68 0.023
GCPANet [77] AAAI’2020 63.53 138.96 0.030
LDF [83] CVPR’2020 49.12 65.60 0.086
ITSD [84] CVPR’2020 16.68 181.65 0.052
MINet [92] CVPR’2020 46.45 374.55 0.077
GateNet [85] ECCV’2020 125.62 288.07 0.068
PA-KRN [86] AAAI’2021 96.46 453.35 0.101
A2SPPNet† - 22.19 107.05 0.091
A2SPPNet‡ - 38.70 31.27 0.074

authors online or generated by their released code with default
settings. Moreover, we do not report the performance of MDF
[78] on the HKU-IS [78] dataset, because MDF adopts HKU-
IS for training.

1) Quantitative Evaluation: The numeric comparisons with
respect to Fβ , MAE, Fωβ , and Sm on six datasets are summa-
rized in Table I. The comparison results of Em on six datasets
are shown in Table II. We report the results of A2SPPNet with
VGG16 [50] and ResNet50 [51] backbones. From Table I and
Table II, it can be clearly seen that our A2SPPNet significantly
outperforms other competitors in almost all cases. Among all
methods, the ResNet50 version of A2SPPNet achieves the best
Fβ values of 87.2%, 94.1%, 95.4%, and 88.6% on SOD, HKU-
IS, ECSSD, and DUTS-test datasets, respectively. For DUT-
OMRON and THUR15K datasets, A2SPPNet achieves compa-
rable results to the best methods. In terms of the metrics MAE
and Sm, both the VGG16 and ResNet50 versions of A2SPPNet
perform best on all six datasets. In terms of the metric Fωβ ,
both the VGG16 and ResNet50 versions of A2SPPNet attain
the best performance on six datasets except for the ResNet50
version on the SOD dataset. In terms of the metric Em, both
the VGG16 and ResNet50 versions of A2SPPNet achieve
the best performance in all cases except for the ResNet50
version on the SOD and DUT-OMRON datasets. Note that
even for those cases where A2SPPNet does not perform best,
A2SPPNet only achieves slightly worse performance than the
best one. The reason why A2SPPNet does not improve the
performance on the SOD dataset significantly may be that
the SOD dataset contains many challenging scenarios which
require more complicated models to resolve. Another reason
may be that the SOD dataset only has 300 images and the
performance has been saturated. Therefore, we can come to
the conclusion that A2SPPNet sets a new state-of-the-art .

2) FT curves and PR curves: We display the FT curves
and PR curves of A2SPPNet and other state-of-the-art methods
on six datasets in Fig. 3. The higher the curve is, the better
the performance. As can be seen, the proposed A2SPPNet
favorably outperforms the other counterparts.

3) Complexity Analysis: Table III summarizes the com-
parison of A2SPPNet to 10 recent competitive methods, in
terms of the number of parameters, the number of FLOPs,

and the runtime. It can be observed that A2SPPNet has a
relatively smaller number of parameters compared with the
other counterparts. In addition, the ResNet50-based A2SPPNet
has the smallest number of FLOPs, i.e., the lowest computa-
tional complexity. At the same time, the speed of A2SPPNet
is comparable to that of the others.

4) Qualitative Evaluation: To further explicitly show the
effectiveness of the proposed A2SPPNet, we show the qual-
itative comparison between A2SPPNet and 12 state-of-the-
art methods in Fig. 4. We select some representative images
from the above datasets to incorporate a variety of difficult
circumstances, including complicated scenes, large objects,
salient objects with thin structures, multiple objects with var-
ious sizes, low contrast between foreground and background,
and confusing background, from top to bottom. Generally, it
can be seen that our method can successfully segment the
objects with fine details, leading to better saliency predictions
in various scenarios.

C. Ablation Studies

In this part, we conduct a series of ablation experiments
to verify the effectiveness of the components of the proposed
A2SPPNet. All variants use the VGG16 [50] backbone.

1) Effect of Component Modules: We start with the simple
U-shaped encoder-decoder structure with skip connections,
which uses two 3×3 convolution layers with nonlinearization
to connect adjacent sides of the decoder (the 1st line of
Table IV). This configuration is viewed as the baseline, and
the other settings remain the default.

a) Effect of multi-scale learning: On top of the baseline,
to prove the effectiveness of multi-scale learning, we replace
the convolution blocks of the top two decoder sides with
typical ASPP modules. The results are shown in the 2nd line
of Table IV. It can be seen that the typical ASPP module
leads to a significant performance advancement, which shows
the importance of multi-scale learning. Intuitively, there exist
various scales in different SOD images and various aspect
ratios of different object-parts in the same image, and thus,
multi-scale learning is needed for better SOD.

b) Effect of the A2SPP module: To prove that the pro-
posed A2SPP module is better than the typical ASPP module,
we continue by replacing ASPP with the A2SPP module.
The results are shown in the 3rd line of Table IV. It is
clear that A2SPP can significantly improve the performance,
demonstrating that A2SPP is more effective than ASPP and
the ordinary convolution. Hence, as mentioned above, A2SPP
can improve the capability of multi-scale learning by resolving
the improper assumption of ASPP that all feature scales are of
equal importance. A2SPP is designed to automatically enhance
the essential information and suppress the noisy information
of various scales. In this way, A2SPP significantly improves
SOD, which heavily relies on multi-scale learning.

c) Effect of the CIEA module: Based on the model
in Section IV-C1b, we replace the ordinary convolutions at
three bottom decoder sides with CIEA. From the results in
the 4th line of Table IV, it can be seen that introducing
CIEA can consistently improve SOD performance in almost



IEEE TRANSACTIONS ON MULTIMEDIA 10

SOD HKU-IS ECSSD

DUT-OMRON THUR15K DUTS-test

0.2 0.4 0.6 0.8 1.00.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n

SOD

0.4 0.6 0.8 1.00.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n

HKU-IS

0.4 0.6 0.8 1.00.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n

ECSSD

0.4 0.6 0.8 1.00.4

0.5

0.6

0.7

0.8

0.9

Recall

Pr
ec

is
io

n

DUT-OMRON

0.4 0.6 0.8 1.00.4

0.5

0.6

0.7

0.8

0.9

Recall

Pr
ec

is
io

n

THUR15K

0.2 0.4 0.6 0.8 1.00.5

0.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n

DUTS-test

Fig. 3. FT curves (top two lines) and PR curves (bottom two lines) of A2SPPNet and 32 state-of-the-art methods on six datasets. A2SPPNet performs
favorably against all other competitors. Note that the F-measure in the FT curves refers to Fβ .
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Complicated Scenes

Large Objects

Thin Objects

Multiple Objects

Low Contrast

Confusing Background

Image CPD BASNet PoolNet EGNet F3Net GCPANet LDF ITSD MINet GateNet PA-KRN FCSOD Ours† Ours‡ GT

Fig. 4. Qualitative comparison between A2SPPNet and 12 recent state-of-the-art methods. “Ours†” and “Ours‡” represent the proposed A2SPPNet with
VGG16 and ResNet50 backbones, respectively. GT: Ground truth.

TABLE IV
EFFECT OF THE MAIN COMPONENTS OF A2SPPNET.

SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-test# Conv ASPP A2SPP CIEA SGL All CIEA All A2SPP
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

1 4 0.810 0.125 0.905 0.041 0.910 0.057 0.713 0.079 0.774 0.075 0.813 0.055
2 4 0.842 0.114 0.923 0.037 0.934 0.047 0.765 0.065 0.793 0.073 0.850 0.048
3 4 0.851 0.107 0.930 0.034 0.938 0.043 0.771 0.062 0.794 0.068 0.864 0.044
4 4 4 0.860 0.103 0.936 0.028 0.944 0.035 0.792 0.056 0.801 0.067 0.880 0.040
5 4 4 4 0.865 0.100 0.940 0.027 0.946 0.033 0.792 0.055 0.808 0.066 0.882 0.038
6 4 4 4 4 0.860 0.105 0.930 0.032 0.939 0.041 0.780 0.060 0.802 0.068 0.871 0.042
7 4 4 4 4 0.845 0.104 0.927 0.032 0.939 0.038 0.756 0.058 0.804 0.067 0.858 0.040

all cases, which suggests the effectiveness of adding attention
to the bottom decoder sides. CNN feature maps, especially
those from bottom decoder sides, contain a substantial amount
of noisy activation. It has been proved that the attention
mechanism can effectively suppress the noisy activation and
enhance the necessary activation, thus improving the SOD
performance.

d) Effect of the SGL technique: This paper follows
PoolNet [89] to deliver the top global information to each
decoder side for informing each decoder side about where
salient objects are and what salient objects look like. Such an

SGL technique can thus guide the learning of the decoder. To
evaluate the effectiveness of SGL, we add the SGL technique
in the 5th line of Table IV. The comparison between the mod-
els with SGL and without SGL demonstrates the superiority
of the SGL technique for performance improvement.

e) Effect of the two-part decoder: In this paper, we place
A2SPP at the partial top decoder sides, and for the bottom
sides, we place the CIEA modules. To test the effectiveness of
this two-part decoder design, we conduct two ablation studies:
(i) we place CIEA at all decoder sides; (ii) we place A2SPP at
all decoder sides. The evaluation results of these two models
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TABLE V
ABLATION STUDIES FOR THE HYPER-PARAMETERS OF A2SPPNET.

SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-testConfigurations
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Default Configurations 0.865 0.100 0.940 0.027 0.946 0.033 0.792 0.055 0.808 0.066 0.882 0.038

#Channels of decoder

(256, 128, 64, 32, 16) 0.862 0.102 0.935 0.030 0.939 0.035 0.787 0.058 0.805 0.072 0.874 0.040
(256, 256, 128, 64, 16) 0.863 0.109 0.934 0.029 0.942 0.037 0.777 0.057 0.805 0.068 0.872 0.038
(128, 128, 64, 32, 16) 0.854 0.110 0.935 0.028 0.944 0.034 0.781 0.056 0.807 0.068 0.874 0.039
(128, 64, 32, 16, 8) 0.856 0.108 0.935 0.029 0.944 0.034 0.781 0.056 0.803 0.069 0.875 0.037

Dilation rates of A2SPP

(1, 2, 4), (1, 2, 4, 8) 0.857 0.104 0.933 0.029 0.942 0.036 0.774 0.059 0.805 0.067 0.871 0.039
(1, 4, 8), (1, 4, 8, 12) 0.861 0.105 0.936 0.029 0.945 0.035 0.787 0.056 0.808 0.066 0.875 0.039

(1, 3, 6), (1, 3, 6) 0.853 0.111 0.937 0.028 0.944 0.036 0.784 0.057 0.803 0.070 0.875 0.039
(1, 3, 6, 12), (1, 3, 6, 12) 0.857 0.107 0.933 0.031 0.945 0.035 0.777 0.059 0.807 0.070 0.874 0.039

#Channels of SGL

((128, 64, 32, 16, 8), 8) 0.856 0.107 0.936 0.028 0.945 0.034 0.777 0.058 0.807 0.070 0.877 0.037
((32, 16, 8, 4, 2), 8) 0.857 0.112 0.926 0.033 0.941 0.038 0.764 0.061 0.804 0.069 0.873 0.041

((64, 32, 16, 8, 4), 16) 0.853 0.108 0.934 0.029 0.944 0.034 0.773 0.058 0.801 0.070 0.871 0.039
((64, 32, 16, 8, 4), 4) 0.866 0.103 0.937 0.029 0.945 0.034 0.789 0.058 0.806 0.070 0.875 0.039

* “#Channels of decoder” means the number of channels of the decoder. Note that for the bottom sides, these numbers refer to the number of channels of
the CIEA modules; otherwise, for A2SPP modules. “Dilation rates of A2SPP” represents the dilation rates of atrous convolutions in the A2SPP modules
at top two decoder sides. “#Channels of SGL” refers to the number of SGL channels for each decoder side and the final saliency prediction.

are displayed in the 6th and 7th lines of Table IV. It can be
observed that the default A2SPPNet performs better than the
other versions, which suggests the effectiveness of the design
of the two-part decoder. The reason for this phenomenon is
that A2SPP inherits the natural property of ASPP in learning
multi-scale high-level semantic representations that exist in
top CNN layers for locating salient objects coarsely [32],
[93], [98]. In contrast, the bottom layers aim at learning low-
level fine-grained features for refining object details, and thus,
A2SPP appears to be meaningless here, especially considering
that A2SPP is unsuitable for processing large feature maps at
the bottom sides, as discussed in Section III-A.

f) Visualization of ablation designs: Fig. 5 displays some
feature visualization figures and the corresponding saliency
maps of various ablation designs to show how features evolve
in A2SPP. The baseline is the simple U-shaped encoder-
decoder network with skip connections (the 1st line of Ta-
ble IV). As shown in Fig. 5(b), the baseline method can obtain
only the rough locations of salient objects. From Fig. 5(c),
it can be seen that ASPP can markedly refine the shapes of
salient objects, which suggests the importance of multi-scale
learning in SOD. We continue by replacing all CIEA modules
in A2SPPNet with SECA and CESA, respectively. As depicted
in Fig. 5(d) and Fig. 5(e), both SECA and CESA can improve
the quality of saliency maps, which demonstrates the effective-
ness of these two attention modules. Fig. 5(f) illustrates the
features and saliency maps produced by the default A2SPPNet
with CIEA, where better results are observed than with the
separate usage of SECA or CESA. Hence, A2SPPNet with
CIEA can discover salient objects and refine object details
better.

2) Impact of Hyper-parameters: In this part, we study the
impact of various hyper-parameters of A2SPPNet and explain
why the default hyper-parameters are set.

a) Numbers of channels of the decoder: Table V displays
the results when choosing different numbers of channels for
the A2SPP and CIEA modules. A2SPPNet appears to be robust
to the changes in the numbers of decoder channels. The default
setting achieves a bit better performance. Thus, we set the
default numbers of channels to (128, 128, 64, 16, 16) from

(a) (b) (c) (d) (e) (f)

Fig. 5. Feature visualization maps and saliency maps of various ablation
designs. (a) Image and ground truth; (b) Baseline; (c) Baseline + ASPP; (d)
A2SPPNet w/ SECA; (e) A2SPPNet w/ CESA; (f) A2SPPNet w/ CIEA.

top to bottom in the decoder.
b) Dilation rates of the A2SPP module: The dilation

rates of atrous convolutions can determine the receptive field
sizes of A2SPP. We summarize the results when using different
dilation rates for A2SPP in Table V. The results still appear
to be robust, and the default setting, i.e., (1, 3, 6) and (1, 3,
6, 9), performs best.

c) Numbers of SGL channels: The proposed SGL tech-
nique plays an essential role in guiding the learning of the de-
coder, and thus, we conduct an ablation study on the numbers
of output channels of SGL modules. The evaluation results are
displayed in Table V. The default numbers of SGL channels
in this paper are ((64, 32, 16, 8, 4), 8). It can be observed
that the default configuration of A2SPPNet outperforms other
baselines slightly.
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TABLE VI
ABLATION STUDIES FOR A2SPPNET WITH DIFFERENT ATTENTION MECHANISMS.

SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-testConfigurations
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

A2SPPNet 0.865 0.100 0.940 0.027 0.946 0.033 0.792 0.055 0.808 0.066 0.882 0.038
A2SPPNetSE 0.854 0.103 0.932 0.031 0.935 0.039 0.785 0.056 0.804 0.067 0.871 0.041
A2SPPNetBAM 0.855 0.105 0.934 0.030 0.936 0.038 0.792 0.058 0.805 0.068 0.872 0.040
A2SPPNetCBAM 0.848 0.107 0.931 0.031 0.938 0.038 0.783 0.059 0.803 0.069 0.868 0.041
A2SPPNetGC 0.864 0.104 0.935 0.031 0.942 0.037 0.801 0.060 0.804 0.068 0.878 0.041

TABLE VII
ABLATION STUDIES FOR SOME DESIGN CHOICES OF A2SPPNET.

SOD HKU-IS ECSSD DUT-OMRON THUR15K DUTS-testConfigurations
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

A2SPPNet 0.865 0.100 0.940 0.027 0.946 0.033 0.792 0.055 0.808 0.066 0.882 0.038
A2SPPNetSECA+ 0.862 0.102 0.936 0.030 0.946 0.035 0.795 0.060 0.807 0.067 0.877 0.041
A2SPPNetCESA− 0.863 0.097 0.934 0.031 0.943 0.035 0.790 0.056 0.804 0.067 0.881 0.043
A2SPPNetAdd 0.865 0.099 0.936 0.030 0.946 0.034 0.789 0.059 0.803 0.068 0.876 0.040
A2SPPNetSGL 0.864 0.098 0.934 0.031 0.946 0.035 0.792 0.058 0.811 0.067 0.878 0.042

3) Comparison to Existing Attention Modules: The pro-
posed CIEA expands the traditional attention mechanisms by
introducing spatial and channel information dependencies in
the channel and spatial attention calculations, respectively. One
could wonder about the superiority of CIEA when compared
to existing attention mechanisms. To accomplish this goal,
we replace all CIEA modules in A2SPPNet with existing SE
[62], BAM [63], CBAM [64], and GC [65] attention modules.
The comparison results are displayed in Table VI. It can be
observed that CIEA consistently outperforms existing attention
modules, which implies the superiority of CIEA in SOD.

4) Validation of Some Design Choices: Here, we validate
some design choices of A2SPPNet.

a) FsGAP and FsGMP in CESA: In Eq. (8), we add FsGAP

and FsGMP to CESA to enhance the spatial information. One
can ask why we do not add similar FcGAP and FcGMP to SECA.
As discussed in Section III-C2, the reason is that CESA can
only use global pooling (i.e., GAP and GMP) to squeeze the
spatial dimension, leading to the loss of spatial information.
In contrast, SECA uses 1 × 1 convolutions to squeeze the
channel dimension, i.e., in a learnable manner. Hence, FcGAP

and FcGMP appear to be unnecessary for SECA, because the
fixed dimension squeeze of GAP and GMP would not further
improve the learnable squeeze. To verify this hypothesis, we
conduct two ablation studies: i) adding FcGAP and FcGMP to
SECA; ii) removing FsGAP and FsGMP from CESA. The results
are provided in Table VII. It can be seen that A2SPPNet
achieves almost the same results with or without adding FcGAP

and FcGMP to SECA. A2SPPNet consistently performs slightly
worse when removing FsGAP and FsGMP from CESA.

b) Aggregation strategy of SECA and CESA: For the
aggregation of SECA and CESA in Eq. (3), there are two
natural combining methods, i.e., element-wise multiplication
and summation. A2SPPNet utilizes element-wise multiplica-
tion as the default in Eq. (3). Here, we evaluate the element-
wise summation, as shown in Table VII. It can be seen
that these two choices attain similar performance, and the
multiplication performs slightly better. Hence, we empirically

Image GT Ours Image GT Ours

Fig. 6. Some failure cases of the proposed method. GT: Ground truth.

use multiplication.
c) ASPP in the SGL technique: For the SGL technique,

we apply the ASPP module rather than the proposed A2SPP.
Compared to ASPP, A2SPP adds an automatic selection of
feature scales. As discussed in Section III-A, this addition
would be unnecessary for SGL, because different network
sides prefer different feature scales [99], [100] and a specific
scale selection of A2SPP cannot satisfy all sides. Here, we
replace the ASPP module in SGL with our A2SPP. As shown
in Table VII, the experimental results with A2SPP are slightly
worse, which validates the above hypothesis.

d) Information-embedding attention: The CIEA module
embeds spatial and channel information dependencies in the
channel and spatial attention calculations, respectively. To
validate this design, we remove these dependencies from
CIEA, and CIEA will degenerate into BAM [63], which
also combines channel and spatial attention for producing a
3D attention map. Then, we replace all CIEA modules in
A2SPPNet with the BAM module [63]. The results have been
shown in Table VI. The consistent performance degradation
in all cases confirms that it is essential to introduce the
information dependencies of one dimension when computing
the attention of the other dimension.

5) Failure Case Analysis: As our method is not oracle,
it also has some failure examples. We show some failure
predictions of our method in Fig. 6. As can be seen, our
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method may fail for inconspicuous salient objects and tiny
objects. We argue that these scenarios are also very challenging
for other SOD methods. Hence, there is still a long way
towards the ideal SOD solution.

V. CONCLUSION

In this paper, we propose the Attentive Atrous Spatial Pyra-
mid Pooling (A2SPP) module for better multi-scale learning
by adding a novel Cubic Information-Embedding Attention
(CIEA) module at each branch of ASPP [32], [93]. CIEA
can model the channel- and spatial-wise dependency of the
3D feature map and generate a 3D attention map with the
same size as the input feature map. In this way, A2SPP can
automatically learn a combination of features from various
scales, for each point in the 3D feature map. Since each point
learns its preference for multi-scale features, A2SPP outper-
forms ASPP for multi-scale learning, as demonstrated by our
ablation studies. Considering the different characteristics of
high-level and low-level features, we add A2SPP at the top two
decoder sides and place the CIEA at the bottom three sides to
build our salient object detector, namely, A2SPPNet. Extensive
experiments demonstrate that A2SPP is more effective than
traditional ASPP, and that A2SPPNet can significantly improve
the SOD performance when compared to previous state-of-the-
art methods.
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