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SAMNet: Stereoscopically Attentive Multi-scale
Network for Lightweight Salient Object Detection

Yun Liu*, Xin-Yu Zhang*, Jia-Wang Bian, Le Zhang, Ming-Ming Cheng

Abstract—Recent progress on salient object detection (SOD)
mostly benefits from the explosive development of Convolutional
Neural Networks (CNNs). However, much of the improvement
comes with the larger network size and heavier computation
overhead, which, in our view, is not mobile-friendly and thus
difficult to deploy in practice. To promote more practical SOD
systems, we introduce a novel Stereoscopically Attentive Multi-
scale (SAM) module, which adopts a stereoscopic attention mech-
anism to adaptively fuse the features of various scales. Embarking
on this module, we propose an extremely lightweight network,
namely SAMNet, for SOD. Extensive experiments on popular
benchmarks demonstrate that the proposed SAMNet yields
comparable accuracy with state-of-the-art methods while running
at a GPU speed of 343fps and a CPU speed of 5fps for 336×336
inputs with only 1.33M parameters. Therefore, SAMNet paves
a new path towards SOD. The source code is available on the
project page https://mmcheng.net/SAMNet/.

Index Terms—Lightweight salient object detection, lightweight
saliency detection, multi-scale learning.

I. INTRODUCTION

SALIENT object detection (SOD), also known as saliency
detection, aims at detecting the most visually distinctive

objects or regions in natural images [1]. The progress in SOD
has been beneficial to a wide range of computer vision applica-
tions, including image retrieval [2], image segmentation [3],
object detection [4], visual tracking [5], scene classification
[6], content-aware image editing [7], etc. Conventional meth-
ods for this task mainly rely on hand-crafted low-level features
and heuristic priors [1], [8], [9], but the lack of high-level se-
mantic information usually leads to limited accuracy. Recently,
thanks to the unprecedented success of Convolutional Neural
Networks (CNNs), especially Fully Convolutional Networks
(FCNs), deep learning based methods have refreshed the state-
of-the-art performance of SOD [10]–[33].

However, those improvements do not come without cost:
they usually rely on large network size and substantial com-
putational overhead [14], [16], [21], [30], [31], [33]–[36]. For
example, EGNet [37] with the VGG16 backbone has 108M
parameters and needs ∼432 MB disk to store its pretrained
model. Moreover, EGNet [37] can only run at 0.09fps on
the powerful i7-8700K CPU and 12.7fps on an NVIDIA
TITAN XP GPU for 336 × 336 images. Such ponderousness
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undoubtedly makes it less practical for real-time and resource-
constrained applications such as autonomous driving, robots,
augmented reality, and so on. In those scenarios, mobile
devices have reduced computational capabilities, restrictive
memory constraints, and limited energy overhead.

Designing lightweight CNNs could be definitely one of the
solutions for the above problem, and it has been studied for
other tasks such as image classification [38]–[41]. Although
drawing inspirations from them, we are the first to make
an effort in SOD. This is nontrivial due to the following
challenges: i) SOD requires both high-level abstract semantic
features and low-level fine-grained features to locate salient
objects and refine object details, respectively; ii) SOD needs
multi-scale information to process salient objects with various
sizes and aspect ratios in natural scenes. Since lightweight
networks usually have shallow depths and simplified oper-
ations, they are less potent in multi-level and multi-scale
learning than traditional large networks [42], [43]. Therefore,
naively applying existing lightweight backbone networks such
as MobileNets [38], [39] and ShuffleNets [40], [41] into SOD
leads to suboptimal performance, which will be demonstrated
in the experiments.

It is well-known that CNNs can learn high-level semantic
information at their top sides and low-level fine details at their
bottom sides. This makes different side-outputs of CNNs con-
tain multi-scale information. Hence, to learn multi-level and
multi-scale information, current state-of-the-art SOD methods
(with large networks) adopt encoder-decoder network architec-
tures [10]–[29] to integrate the multi-level side-output features
of backbone networks. Recent development of SOD mainly
comes from new strategies and modules for the effective fusion
of multi-level backbone features.

Based on the above analyses, the key to lightweight SOD is
how to effectively learn multi-level and multi-scale informa-
tion within limited parameter budgets. Instead of integrating
different side-outputs of backbone networks [14], [19], [21],
[23], [28], [30], [37] or summarizing the convolutional features
of different dilation rates [15], [44] as done in previous
studies, we propose a novel Stereoscopically Attentive Multi-
scale (SAM) module for multi-scale learning. It adopts a
stereoscopic attention mechanism to automatically control
the learning at different scales, so it has the capability to
effectively learn the necessary information at various levels of
deep CNNs. Using SAM module as the basic unit, we build
a lightweight encoder-decoder network, namely SAMNet, to
integrate the multi-level and multi-scale features learned by
SAM modules. SAMNet achieves comparable accuracy with
state-of-the-art SOD methods while running at 5fps on an i7-
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8700K CPU and 343fps on an NVIDIA TITAN XP GPU
for 336 × 336 images. Moreover, SAMNet only has 1.33M
parameters. These lightweight properties make it possible for
practical mobile applications.

In summary, our contributions are threefold:
• We propose a novel Stereoscopically Attentive Multi-

scale (SAM) module that adopts a stereoscopic attention
mechanism for effective and efficient multi-scale learn-
ing.

• Using the SAM module as the basic unit, we propose
SAMNet, a lightweight encoder-decoder architecture for
SOD, which is the first lightweight SOD model as we
know.

• We empirically evaluate SAMNet on six popular SOD
datasets and demonstrate its comparable accuracy, much
higher efficiency, and much smaller network size.

II. RELATED WORK

a) Salient Object Detection: Over the past two decades,
numerous methods have been proposed to detect salient objects
in an image. Traditional methods are mainly based on hand-
crafted features, such as image contrast [1], texture [45], cen-
tral prior [8], background prior [46], etc. Despite the efficiency
of these approaches, hand-crafted features intrinsically lack
the capacity for high-level representation, leading to limited
performance.

With the rapid development of deep learning, CNN-based
SOD methods have surpassed traditional counterparts by a
considerable margin. Early CNN-based methods [24], [47]–
[49] include several fully-connected layers, resulting in the
loss of essential spatial information of the whole image. Since
the seminal work [50] proposed FCNs to predict semantic
labels at the pixel level, FCN-based SOD approaches [11]–
[16], [19]–[23], [25] have dominated this field by exploring the
multi-level and multi-scale deep features, as described above.

Although previous approaches have achieved high accu-
racy by employing powerful CNNs, they are relatively slow
in speed, hungry in energy consumption, and occupy large
memory space. These shortcomings make it difficult to deploy
state-of-the-art methods into real-world applications. This is
our motivation for this work, i.e., towards lightweight SOD
that trades off accuracy, model size, and speed. Our technical
motivation comes from the fact that most of previous CNN-
based methods [10]–[29] improve the performance through
the exploration in multi-scale and multi-level deep learning.
In this paper, we propose a novel SAM module that adopts
stereoscopic attention for lightweight multi-scale learning.

b) Attention Mechanism: Attention mechanism plays an
essential role in human perception [51], [52]. Instead of
processing the whole image at once, human visual system
adaptively filters less essential information like image back-
ground to enhance the capture of visual structure. This has
inspired the research in deep learning.

Recent computer vision community has witnessed numerous
successes of attention mechanism in a wide range of tasks,
including SOD [19], [26], [34], sequence learning [53], person
re-ID [54], and image recovery [55]. For image classification,

Wang et al. [56] proposed to use an hourglass module to
generate attention maps for hidden features. Furthermore, Hu
et al. [57] proposed a “Squeeze-and-Excitation” module to
explicitly exploit inter-channel relationships and adaptively
recalibrate feature maps in a channel-wise manner. Beyond
channel-wise attention, CBAM [58] introduces spatial atten-
tion in a similar way. These methods fall into the self-
attention category. Spatial and channel-wise self-attention can
adaptively emphasize the most informative feature patches
and channels, respectively. Different from these methods, we
introduce a stereoscopic attention mechanism to adaptively
recalibrate information flow from multiple branches based on
both channel inter-dependencies and spatial contextual clues.
Hence the proposed SAM module can effectively learn multi-
scale information under a lightweight setting.

III. METHODOLOGY

In this section, we elaborate on the proposed framework
for SOD. In Section III-A, we present a simple multi-scale
module. In Section III-B, we propose the SAM module for
effective multi-scale learning. Finally, in Section III-C, we in-
corporate the proposed SAM module into the encode-decoder
network and elaborate on the full network architecture.

A. Multi-scale Learning

Based on the above analyses, the multi-scale feature repre-
sentations of CNNs are of great importance for SOD [14], [19],
[23], [28], [30], [37]. Inspired by this, we first propose a simple
multi-scale module to process visual information at different
scales. Lightweight is central to our design. We adopt dilated
convolutions with different dilation rates to capture multi-scale
information and use the depthwise separable convolution to
reduce floating-point operations and model parameters. We
call it dilated depthwise separable convolution and use it
as the basic convolutional operator to scale up the network
dimensionality in terms of depth and width.

Formally, let I ∈ RC×H×W be the input feature map
whose number of channels, height, and width are C, H , and
W , respectively. With the input I , we first apply a single
depthwise separable conv3× 3 (DSConv3× 3 for short) to
extract common information F0 for each branch, namely,

F0 = K0(I), (1)

where K0 denotes a DSConv3× 3 operation. At different
branches, dilated DSConv3× 3 with different dilation rates
are applied to F0, i.e.,

Fi = Ki(F0), i = 1, 2, · · · , N, (2)

where Ki denotes the dilated DSConv3× 3 operation at
branch i, and N is the number of branches. Then, contextual
information at different scales is aggregated by a single
element-wise summation with a residual connection, namely,

F =

N∑
i=0

Fi. (3)

Here, we use element-wise summation instead of concatena-
tion, because concatenation will greatly increase the number
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Fig. 1. Illustration of the proposed SAM module. Given the input feature map I , SAM first extracts multi-scale features Fi (i = 0, 1, · · · , N ) through
multiple branches. Multi-scale features Fi are aggregated via element-wise summation to produce M . Then, we calculate channel-wise attention logits d and
spatial attention logits s based on M . d and s are multiplied to get stereoscopic attention logits v that are transformed to stereoscopic attention weights
W V
i (i = 0, 1, · · · , N ) using a softmax function. W V

i (i = 0, 1, · · · , N ) are used as weights to aggregate Fi to obtain F . At last, a residual connection
[43] from I is added to get the output O. In the figure, ⊗ indicates element-wise multiplication, and the two multiplied feature maps are replicated to the
same shape before multiplication. The symbol r denotes the dilation rate of the dilated DSConv3× 3. Best viewed in color.

of channels, leading to heavier computational complexity and
more network parameters. Finally, the aggregated features are
further rearranged by a vanilla conv1× 1, i.e.,

O = Kfuse(F ) + I, (4)

where Kfuse denotes the conv1× 1 operation to fuse con-
textual information at various scales. The summation of I
denotes a residual connection [43], which has demonstrated
to be effective in CNN training.

The dilation rates and the number of branches are hyper-
parameters involved in our multi-scale module. Empirically,
larger dilation rates and more branches are desired when the
input features I are of high resolution, as large feature maps
usually possess contextual information at various scales.

B. Stereoscopically Attentive Multi-scale Module

A potential drawback of the multi-scale module in Sec-
tion III-A lies in the element-wise summation. When con-
textual information from different branches is directly sum-
marized together, informative branches may be weakened or
even overwhelmed by non-informative ones. On the other
hand, the layers at different network depths may prefer the
information from different scales, while the element-wise
summation assigns equal importance to all scales. To alle-
viate this problem, we propose a novel stereoscopic attention
mechanism that allows each channel at each spatial location
to adaptively adjust the weight of each branch with a soft
attention mechanism. Fig. 1 provides an illustration of the
proposed SAM module with four branches.

a) Stereoscopic Attention Mechanism: Without loss of
generality, we consider the input feature is a 4-dimensional
tensor F ∈ R(N+1)×C×H×W , in which each branch i ∈
{0, · · ·N} generates features Fi ∈ RC×H×W of different
scale and semantic level. It is widely believed that layers from
different depth levels in a network may prefer the information

from different scales, and thus blindly feeding all features
F may lead to severe overfitting. A natural solution is to
attentively suppress non-informative branches and promote
discriminative ones automatically, and we achieve this by the
well-established attention mechanism.

In our setting, an ideal attention module should have the
following features. i) Due to the independence of each chan-
nel, the final attention should have a strong intra-channel
dependency. More specifically, different feature channels are
usually obtained by convolving independent filters with input
features. In this case, if a feature from a particular channel
is informative for the final prediction, the features in the
same channel of the same branch are likely to be informative
as well. ii) The final attention should have a strong spatial-
wise dependency. The reason could be that, as a mid-level
task, SOD requires certain level of reasoning in the local
neighbourhood for each pixel. iii) The computation should
be efficient. In this case, the naı̈ve solution of independently
learning a group (e.g., C ×H ×W ) of branch-wise attention
weights is suboptimal due to its heavy computational overload.

The first two requirements mentioned above regularize the
attention mechanism in a global and local manner, respectively.
This naturally motivates us to factorize the final attention
weights v into two individual weights as follows:

v = d⊗ s, (5)

where d and s denote the channel-wise attention and the
spatial-wise attention, respectively. ⊗ indicates element-wise
multiplication, and d and s are replicated to the same shape of
(N+1)×C×H×W before multiplication. More specifically,
channel-wise attention d ∈ R(N+1)×C shrinks feature spatially
and attentively suppress non-informative features and promote
discriminative ones in a channel-wise global manner. In the
same way, the spatial-wise attention s ∈ R(N+1)×H×W

absorbs the features at a particular spatial location across
different channels. Finally, d and s are broadcasted into the
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Fig. 2. Overall encoder-decoder architecture of the proposed SAMNet. Si and Ri represent the output feature maps of the encoder and the decoder at the
ith stage, respectively. Pi is the predicted saliency map at the ith stage, and P1 is the final prediction of SAMNet. G is the ground-truth saliency map.
PPM denotes the well-known Pyramid Pooling Module [59]. Best viewed in color.

same dimensionality of (N + 1)×C ×H ×W to obtain the
final attention weight by Eq. (5).

b) Preprocessing by scale fusion: In order to reduce the
computational overload, we aggregate multi-scale contextual
information with element-wise summation, namely,

M =

N∑
i=0

Fi, (6)

The fused features M is used to compute the gating statistics
for each branch. Different from self-attention, the attention for
each module branch is decided by the learning of all branches,
instead of a single branch as in self-attention mechanisms.
Therefore, the SAM module can extract the informative fea-
tures from all branches within a “global” view. As a result,
the SAM module has the capability to learn the features at its
preferred scales.

c) Channel-wise Attention Mechanism: The channel at-
tention mechanism aims at calculating a channel-wise attention
vector WD

i ∈ RC for each branch i, i = 0, 1, · · · , N . To ex-
plore the inter-channel relationship among different channels
[57], we embed the global information using global average
pooling (GAP) on the fused feature map M , i.e.,

zc = FGAP(M) =
1

HW

H∑
i=1

W∑
j=1

Mc,i,j ,

c = 0, 1, · · · , C − 1,

(7)

where z ∈ RC is the latent vector encoding channel-wise
information of M . Then, we apply a multi-layer perceptron
(MLP) with two layers1 on the latent vector, and extract
channel-wise information at different scales as follows:

d = FMLP(z), (8)

1We insert batch normalization and ReLU activation function between the
two linear transformations.

where d ∈ R(N+1)C is further reshaped to R(N+1)×C . The
softmax function is applied to d on the branch-wise dimension
to obtain the channel-wise attention, i.e.,

WD
i,c =

edi,c∑N
j=0 e

dj,c

,

i = 0, 1, · · · , N ; c = 1, 2, · · · , C.
(9)

With channel-wise attention incorporated, the feature aggre-
gation in Eq. (3) is rewritten as

FD =

N∑
i=0

WD
i ⊗ Fi, (10)

where WD
i is replicated to the same shape as Fi

(i.e., RC×H×W ) before element-wise multiplication. The fu-
sion of Eq. (4) is applied to FD to serve as the output.

d) Spatial Attention Mechanism: The spatial attention
mechanism aims at computing a spatial attention map W S

i ∈
RH×W to highlight or suppress the activation at specific
locations. It is well-acknowledged that large receptive fields
can capture contextual information better, which is crucial
for learning location-wise attention [58]. Based on this, we
adopt dilated DSConv3× 3 to enlarge the receptive fields
while maintaining low computational complexity. Specifically,
the fused features M is first projected to a low-dimensional
space RC/4×H×W by a conv1× 1 for reducing parameters
and computational cost. Then, two dilated DSConv3× 3 are
applied to the reduced features for efficient contextual infor-
mation aggregation. Finally, the features are again reduced to
R(N+1)×H×W using a conv1× 1. Mathematically, we have

s = F1×1
4 (F3×3

3 (F3×3
2 (F1×1

1 (M)))), (11)

where Fk×ki denotes the ith (depthwise separable or vanilla)
k × k convolution. Similar to channel-wise attention mecha-
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nism, we can formulate the fusion of multiple branches using
spatial attention as follows:

W S
i,h,w =

esi,h,w∑N
j=0 e

sj,h,w

, i = 0, 1, · · · , N,

F S =

N∑
i=0

W S
i ⊗ Fi,

(12)

in which we have 0 ≤ h < H and 0 ≤ w < W . W S
i is

replicated to the shape of RC×H×W before multiplication. Eq.
(4) is applied to F S to produce the output.

e) Final Normalization: With d and s defined, the soft-
max function is applied to the stereoscopic attention v on the
branch-wise dimension, namely,

W V
i,c,h,w =

evi,c,h,w∑N
j=0 e

vj,c,h,w

, i = 0, 1, · · · , N. (13)

After this, W V
i ∈ RC×H×W serves as the stereoscopic

weighting scalars for the ith branch. The feature fusion in
Eq. (3) is rewritten as

F V =

N∑
i=0

W V
i ⊗ Fi, (14)

Eq. (4) can also be applied to F V to generate the output of a
SAM module. We display the computation process of F V in
Fig. 1.

So far, we have designed four modules for multi-scale
learning, i.e., F , FD, F S , and F V . Among them, F V is
the default SAM module in this paper, because it achieves
better performance with the consideration of both channel-
wise attention and spatial attention. With the above design,
each SAM module can automatically decide what information
it wants through the control of multi-scale branches.

C. Network Architecture

a) Backbone Architecture: Following previous studies
[30]–[32], [35], [60], we build an FCN structure [50] using
the proposed SAM module as the basic unit. Within the first
five stages, we use DSConv3× 32 with the stride of 2 to
downsample the input and adjust the number of channels.
Then, we apply the proposed SAM module to learn multi-
scale contextual information. For the first two stages, as the
input feature maps are of relatively high resolution, we merely
employ one SAM module to avoid the heavy computational
overhead. On the contrary, from the third stage to the fifth
stage, we stack multiple SAM modules to enlarge the receptive
fields and enrich deep convolutional representations. After
the final fifth stage, we adopt the Pyramid Pooling Module
(PPM) [59] to further enhance global feature learning. The
default configuration for dilation rates and the number of
branches in SAM modules is shown in Table I. Please refer to
Table V for detailed ablation studies about different network
configurations.

2For the first stage, we just use regular conv3× 3.

TABLE I
BACKBONE SETTINGS OF THE PROPOSED SAMNET.

Stage Resolution Module #M #F Stride Dilation rates

1 224× 224 conv3× 3 1 16 2 -
112× 112 SAM 1 16 1 1,2,3

2 112× 112 DSConv3× 3 1 32 2 -
56× 56 SAM 1 32 1 1,2,3

3 56× 56 DSConv3× 3 1 64 2 -
28× 28 SAM 3 64 1 1,2,3

4 28× 28 DSConv3× 3 1 96 2 -
14× 14 SAM 6 96 1 1,2,3

5 14× 14 DSConv3× 3 1 128 2 -
7× 7 SAM 3 128 1 1,2

6 7× 7 PPM 1 128 1 -
* “#M” means the number of modules whose types are specified in

the column of “Module”. “#F” means the number of convolution
filters (i.e., channels).

b) Encoder-Decoder Network: Based on the above back-
bone, we can build a lightweight encoder-decoder network, as
illustrated in Fig. 2. Let {Si : i = 1, 2, · · · , 6} denote the
output feature maps of each stage of the backbone. For the
fusion of top features, we apply a single conv1× 1 to S5 to
adjust the number of channels and fuse S5 and S6 via element-
wise summation. Then, we adopt a dilated DSConvk × k to
further integrate the fused activation. Formally, we have

R5 = Gk×k5 (G1×1
5 (S5) + S6), (15)

where Gk×k5 denotes the (depthwise separable) k×k convolu-
tion at the fifth stage, and R5 denotes the fused feature map
at the fifth stage. Similarly, for the fusion of bottom features,
we upsample the fused features from the top stages to match
the spatial resolution of the feature maps at the bottom stages.
In summary, we have

Ri = Gk×ki (G1×1
i (Si) + Up(Ri+1)), i = 1, 2, 3, 4, (16)

in which Up represents the upsampling operation with an
upsampling rate of 2.

c) Deep Supervision & Loss Function: We employ deep
supervision [61] to improve the transparency of the learning
process for hidden layers. Concretely, for the fused features
{Ri, i = 1, 2, 3, 4, 5}, we sequentially apply a conv1× 1 with
a single output channel and the sigmoid activation function to
derive several predictions {Pi, i = 1, 2, 3, 4, 5}. We adopt the
standard binary cross-entropy loss for training, which can be
formulated as follows:

L = LBCE(P1,G) + λ

5∑
i=2

LBCE(Pi,G), (17)

where LBCE is the standard binary cross-entropy loss function,
and G denotes the ground-truth saliency map. λ denotes the
weighting scalar for loss balance, and we follow [59] to
empirically set λ to 0.4 in this paper.

IV. EXPERIMENTS

A. Experimental Setup

a) Implementation Details: The proposed method is im-
plemented using the PyTorch [68] library. The training of
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TABLE II
COMPARISON WITH EXISTING METHODS IN TERMS OF THE NUMBER OF PARAMETERS (#PARAM), GPU MEMORY USAGE, Fβ , AND MAE.

Methods #Param Memory ECSSD DUT-OMRON DUTS-TE HKU-IS SOD THUR15K
(M) (M) Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

DRFI [8] - - 0.777 0.161 0.652 0.138 0.649 0.154 0.774 0.146 0.704 0.217 0.670 0.150
DCL [62] 66.24 3737 0.895 0.080 0.733 0.095 0.785 0.082 0.892 0.063 0.831 0.131 0.747 0.096
DHSNet [24] 94.04 1899 0.903 0.062 - - 0.807 0.066 0.889 0.053 0.822 0.128 0.752 0.082
RFCN [10] 134.69 4501 0.896 0.097 0.738 0.095 0.782 0.089 0.892 0.080 0.802 0.161 0.754 0.100
NLDF [12] 35.49 11707 0.902 0.066 0.753 0.080 0.806 0.065 0.902 0.048 0.837 0.123 0.762 0.080
DSS [30] 62.23 3209 0.915 0.056 0.774 0.066 0.827 0.056 0.913 0.041 0.842 0.122 0.770 0.074
Amulet [23] 33.15 3359 0.913 0.061 0.743 0.098 0.778 0.085 0.897 0.051 0.795 0.144 0.755 0.094
UCF [11] 23.98 5317 0.901 0.071 0.730 0.120 0.772 0.112 0.888 0.062 0.805 0.148 0.758 0.112
SRM [35] 43.74 1927 0.914 0.056 0.769 0.069 0.826 0.059 0.906 0.046 0.840 0.126 0.778 0.077
PiCANet [21] 32.85 1541 0.923 0.049 0.766 0.068 0.837 0.054 0.916 0.042 0.836 0.102 0.783 0.083
BRN [14] 126.35 5477 0.919 0.043 0.774 0.062 0.827 0.050 0.910 0.036 0.843 0.103 0.769 0.076
C2S [16] 137.03 1455 0.907 0.057 0.759 0.072 0.811 0.062 0.898 0.046 0.819 0.122 0.775 0.083
RAS [34] 20.13 2417 0.916 0.058 0.785 0.063 0.831 0.059 0.913 0.045 0.847 0.123 0.772 0.075
DNA [31] 20.06 2071 0.935 0.041 0.799 0.056 0.865 0.044 0.930 0.031 0.853 0.107 0.793 0.069
CPD [63] 29.23 761 0.930 0.044 0.794 0.057 0.861 0.043 0.924 0.033 0.848 0.113 0.795 0.068
BASNet [18] 87.06 1103 0.938 0.040 0.805 0.056 0.859 0.048 0.928 0.032 0.849 0.112 0.783 0.073
AFNet [27] 37.11 1123 0.930 0.045 0.784 0.057 0.857 0.046 0.921 0.036 0.848 0.108 0.791 0.072
PoolNet [28] 53.63 1087 0.934 0.048 0.791 0.057 0.866 0.043 0.925 0.037 0.863 0.111 0.800 0.068
EGNet [37] 108.07 1177 0.938 0.044 0.794 0.056 0.870 0.044 0.928 0.034 0.859 0.110 0.800 0.070
BANet [64] 55.90 3275 0.940 0.038 0.803 0.059 0.872 0.040 0.932 0.031 0.865 0.105 0.796 0.068
MobileNet [38] 4.27 633 0.906 0.064 0.753 0.073 0.804 0.066 0.895 0.052 0.809 0.136 0.767 0.081
MobileNetV2 [39] 2.37 609 0.905 0.066 0.758 0.075 0.798 0.070 0.890 0.056 0.801 0.138 0.766 0.085
ShuffleNet [40] 1.80 585 0.907 0.062 0.757 0.069 0.811 0.062 0.898 0.050 0.816 0.130 0.771 0.078
ShuffleNetV2 [41] 1.60 579 0.901 0.069 0.746 0.076 0.789 0.071 0.884 0.059 0.789 0.147 0.755 0.086
ICNet [65] 6.70 633 0.918 0.059 0.773 0.072 0.810 0.067 0.898 0.052 0.802 0.134 0.768 0.084
BiSeNet R18 [66] 13.48 719 0.909 0.062 0.757 0.072 0.815 0.062 0.902 0.049 0.821 0.128 0.776 0.080
BiSeNet X39 [66] 1.84 665 0.901 0.070 0.755 0.078 0.787 0.074 0.888 0.059 0.792 0.147 0.756 0.090
DFANet [67] 1.83 749 0.896 0.073 0.750 0.078 0.791 0.075 0.884 0.061 0.802 0.148 0.757 0.089
SAMNet (OURS) 1.33 599 0.925 0.053 0.797 0.065 0.835 0.058 0.915 0.045 0.833 0.123 0.785 0.077

all experiments is conducted using the Adam optimizer [69]
with parameters β1 = 0.9, β2 = 0.999, weight decay of
10−4, and batch size of 20. Our model is pretrained on the
ImageNet dataset [70] as in [43]. We adopt poly learning
rate scheduler so that the learning rate for the nth epoch is
init lr ×

(
1− n

#epochs

)power
, where init lr = 5 × 10−4 and

power = 0.9. We train the proposed model for 50 epochs,
i.e., #epochs = 50.

b) Datasets: We extensively evaluate the proposed
method on six datasets, including DUTS [71], ECSSD [72],
SOD [73], HKU-IS [47], THUR15K [74], and DUT-OMRON
[45] datasets. These six datasets consist of 15572, 1000, 300,
4447, 6232, and 5168 natural images with corresponding
pixel-level labels, respectively. Following recent studies [14],
[21], [31], [35], [75], we train the proposed model on the
DUTS training set and evaluate it on the DUTS testing set
(DUTS-TE) and other five datasets.

c) Evaluation Criteria: We evaluate the accuracy of
SAMNet against previous state-of-the-art methods with regard
to four widely-used metrics, i.e., Fβ-measure score (Fβ), mean
absolute error (MAE), weighted Fωβ -measure (Fωβ ) [76], and
structure similarity measure (Sβ) [77]. Given a threshold in
the range of [0, 1), we can binarize the predicted saliency
probability map and then calculate the precision and recall
values by comparing the binarized prediction map with the
binary ground-truth map. With precision and recall calculated,
Fβ-measure is the weighted harmonic mean of precision and
recall, i.e.,

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
, (18)

where we set β2 = 0.3 to emphasize the importance of
precision, as in previous works [21], [23], [28], [30], [31].
Note that each threshold will correspond to a Fβ score here,
and we report the maximum Fβ score across all thresholds.
MAE measures the difference between the predicted saliency
map P and the ground-truth saliency map G, which can be
computed as

MAE(P ,G) =
1

HW

H∑
i=1

W∑
j=1

|Pij −Gij | , (19)

where H and W denote the height and width of the saliency
map, respectively. The weighted Fωβ -measure [76] is designed
to amend the interpolation flaw, the dependency flaw, and
the equal-importance flaw in traditional evaluation metrics,
and we use it with default settings to evaluate SAMNet and
other competitors. As for Sβ [77], it is also a widely-used
saliency evaluation metric as it can measure the structure sim-
ilarity between predictions and ground truths. Sβ consists of
region-aware and object-aware structural similarity measures,
in which the former is achieved using well-known SSIM [78],
and the latter is based on the probability theory. We adopt the
official code with default settings in our experiments.

d) Efficiency Measures: This paper targets a lightweight
yet powerful solution for SOD, so we also evaluate the
efficiency and flexibility of various methods, including the
number of model parameters (#Param), GPU memory usage,
the number of floating-point operations (FLOPs), and the
inference speed (FPS). GPU memory usage measures the
amount of memory required for a model to test an image.
The number of FLOPs measures the computational cost of a
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TABLE III
COMPARISON WITH EXISTING METHODS IN TERMS OF THE NUMBER OF FLOPS, SPEED, Fωβ , AND Sβ .

Methods FLOPs Speed ECSSD DUT-OMRON DUTS-TE HKU-IS SOD THUR15K
(G) (FPS) Fωβ ↑ Sβ ↑ Fωβ ↑ Sβ ↑ Fωβ ↑ Sβ ↑ Fωβ ↑ Sβ ↑ Fωβ ↑ Sβ ↑ Fωβ ↑ Sβ ↑

DRFI [8] - 0.1 0.548 0.727 0.424 0.697 0.378 0.676 0.504 0.739 0.450 0.616 0.444 0.711
DCL [62] 224.9 1.4 0.782 0.869 0.584 0.762 0.632 0.803 0.770 0.871 0.669 0.756 0.624 0.794
DHSNet [24] 15.8 10.0 0.837 0.880 - - 0.705 0.820 0.816 0.870 0.685 0.746 0.666 0.802
RFCN [10] 102.8 0.4 0.725 0.856 0.562 0.774 0.586 0.793 0.707 0.858 0.591 0.716 0.591 0.793
NLDF [12] 263.9 18.5 0.835 0.870 0.634 0.770 0.710 0.816 0.838 0.879 0.708 0.753 0.676 0.801
DSS [30] 114.6 7.0 0.864 0.879 0.688 0.790 0.752 0.826 0.862 0.881 0.711 0.746 0.702 0.805
Amulet [23] 45.3 9.7 0.839 0.891 0.626 0.781 0.657 0.804 0.817 0.886 0.674 0.750 0.650 0.796
UCF [11] 61.4 12.0 0.805 0.881 0.573 0.760 0.595 0.782 0.779 0.875 0.673 0.759 0.613 0.785
SRM [35] 20.3 12.3 0.849 0.890 0.658 0.798 0.721 0.836 0.835 0.887 0.670 0.739 0.684 0.818
PiCANet [21] 37.1 5.6 0.862 0.909 0.691 0.826 0.745 0.860 0.847 0.905 0.721 0.787 0.687 0.823
BRN [14] 24.1 3.6 0.887 0.898 0.709 0.806 0.774 0.842 0.875 0.894 0.738 0.768 0.712 0.813
C2S [16] 20.5 16.7 0.849 0.891 0.663 0.799 0.717 0.831 0.835 0.889 0.699 0.757 0.685 0.812
RAS [34] 35.6 20.4 0.855 0.889 0.695 0.812 0.739 0.838 0.849 0.889 0.718 0.761 0.691 0.813
DNA [31] 82.5 25.0 0.897 0.909 0.729 0.823 0.797 0.863 0.889 0.908 0.755 0.780 0.723 0.824
CPD [63] 59.5 68.0 0.889 0.905 0.715 0.818 0.799 0.866 0.879 0.904 0.718 0.765 0.731 0.831
BASNet [18] 127.3 36.2 0.898 0.910 0.751 0.836 0.802 0.865 0.889 0.909 0.728 0.766 0.721 0.823
AFNet [27] 38.4 21.6 0.880 0.907 0.717 0.826 0.784 0.867 0.869 0.905 0.726 0.773 0.719 0.829
PoolNet [28] 123.4 39.7 0.875 0.909 0.710 0.829 0.783 0.875 0.864 0.908 0.731 0.781 0.724 0.839
EGNet [37] 270.8 12.7 0.886 0.913 0.727 0.836 0.796 0.878 0.876 0.912 0.736 0.781 0.727 0.836
BANet [64] 121.6 12.5 0.901 0.918 0.736 0.832 0.810 0.878 0.889 0.915 0.765 0.788 0.730 0.834
MobileNet [38] 2.2 295.8 0.829 0.884 0.656 0.802 0.696 0.828 0.816 0.884 0.653 0.735 0.675 0.814
MobileNetV2 [39] 0.8 446.2 0.820 0.885 0.651 0.806 0.676 0.823 0.799 0.879 0.657 0.742 0.660 0.811
ShuffleNet [40] 0.7 406.9 0.831 0.884 0.667 0.808 0.709 0.834 0.820 0.885 0.670 0.743 0.683 0.819
ShuffleNetV2 [41] 0.5 452.5 0.812 0.878 0.637 0.797 0.665 0.816 0.788 0.871 0.621 0.715 0.652 0.806
ICNet [65] 6.3 75.1 0.838 0.895 0.669 0.813 0.694 0.830 0.812 0.885 0.663 0.743 0.668 0.812
BiSeNet R18 [66] 25.0 120.5 0.829 0.886 0.648 0.803 0.699 0.835 0.819 0.889 0.669 0.751 0.675 0.818
BiSeNet X39 [66] 7.3 165.8 0.802 0.877 0.632 0.799 0.652 0.813 0.784 0.875 0.620 0.720 0.641 0.802
DFANet [67] 1.7 91.4 0.799 0.872 0.627 0.794 0.652 0.811 0.778 0.868 0.617 0.718 0.639 0.802
SAMNet (OURS) 0.5 343.2 0.855 0.902 0.699 0.830 0.729 0.849 0.837 0.898 0.686 0.756 0.693 0.825
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Fig. 3. Illustration of the trade-off between performance and computational cost. The F-measure (Fβ ) is averaged over six datasets. Note that the horizon
axis is logarithmic.

model, and a smaller number of FLOPs leads to lower energy
consumption. Following lightweight backbone networks [38]–
[41] and efficient semantic segmentation [65]–[67], the speed
stands for the number of images that a model can do network
inference per second, tested on a single NVIDIA TITAN Xp
GPU. Since deep supervision is only used in training, we omit
the calculation of {Pi, i = 2, 3, 4, 5} in the speed testing of
SAMNet. For saliency detectors, memory usage, FLOPs, and
speed are tested using a 336× 336 input image except that a
method specifies its input dimensions. Since efficient semantic
segmentation methods [65]–[67] are usually designed for high-
resolution images, we use a 672×672 input to ensure accuracy;
otherwise, we would get very low accuracy. For reformed
baselines based on lightweight backbones [38]–[41], we use
a 336 × 336 input. Here, #Param and GPU memory usage
are measured in million (M), and the number of FLOPs is
measured in giga (G).

B. Performance Analysis

In this part, we compare the proposed SAMNet with 20
state-of-the-art SOD methods, including DRFI [8], DCL [62],
DHSNet [24], RFCN [10], NLDF [12], DSS [30], Amulet
[23], UCF [11], SRM [35], PiCANet [21], BRN [14], C2S
[16], RAS [34], DNA [31], CPD [63], BASNet [18], AFNet
[27], PoolNet [28], EGNet [37], and BANet [64]. Other than
existing SOD methods, we also compare with several state-of-
the-art lightweight backbone networks that are widely used for
image classification, including MobileNet [38], MobileNetV2
[39], ShuffleNet [40], and ShuffleNetV2 [41]. For adapting
them to the SOD task, we add the same decoder in the
proposed SAMNet to them. The resulting baselines are trained
with the same settings for comparison. Besides, we compare
with some efficient semantic segmentation methods as well,
including ICNet [65], BiSeNet [66], and DFANet [67]. We
reform them for SOD by replacing their final softmax acti-
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Fig. 4. Qualitative comparison with state-of-the-art SOD methods.

vation function with the standard sigmoid activation function.
For BiSeNet [66], we report its results with ResNet-18 [43]
(i.e., BiSeNet R18) and Xception-39 [79] (i.e., BiSeNet X39)
backbones, respectively.

a) Comparison with Existing SOD Methods: Table II
shows the evaluation results of the proposed SAMNet com-
pared with previous state-of-the-art alternatives in terms of the
number of parameters, GPU memory usage, Fβ , and MAE.
Table III shows the evaluation results in terms of the number
of FLOPs, speed, Fωβ , and Sβ . Note that the number of
FLOPs is highly related to energy consumption for the network
inference. The results clearly show that SAMNet achieves on
par accuracy with state-of-the-art SOD solutions, especially in
terms of Fβ , MAE, and Sβ . However, SAMNet requires one
or two orders of magnitude fewer computational resources.
For example, compared with the best performing BANet [64],
SAMNet shows a slightly lower average Fβ (0.848 vs. 0.868)
over six datasets, but SAMNet has 42× fewer parameters,
5.5× less GPU memory consumption, 243× fewer FLOPs,
27× faster running speed than BANet [64]. This has significant
impacts on mobile devices, where the limited computational
resource, reduced energy supply, restrictive running memory
and storage space cannot afford the heavy overhead of tradi-
tional cumbersome SOD methods.

We also illustrate the comparison in Fig. 3, where the trade-
offs between the accuracy and efficiency of various methods
are more clearly shown. In the sub-figures of Fβ vs. #Param
and Fβ vs. FLOPs, SAMNet lies at the top-left corner; in the
sub-figure of Fβ vs. FPS, SAMNet lies at the top-right corner.
This implies that SAMNet achieves comparable accuracy to
previous state-of-the-art methods with much fewer parameters
and FLOPs, and much faster speed. Therefore, we can come to
the conclusion that SAMNet achieves a good trade-off among

accuracy, the number of parameters, GPU memory usage, the
number of FLOPs, and speed.

b) Comparison with Lightweight Backbones: Table II
and Table III also present the comparison of SAMNet to
lightweight backbone based baselines, i.e., MobileNet [38],
MobileNetV2 [39], ShuffleNet [40], and ShuffleNetV2 [41].
Although these baselines have similar or even faster speeds
than SAMNet, SAMNet achieves substantially better accuracy
in terms of all metrics. This suggests that it is suboptimal
to apply existing lightweight backbones for SOD directly.
This also demonstrates the importance of carefully designing
network architectures for the lightweight SOD task and the
advantage of the proposed multi-scale attention mechanism.

c) Comparison with Efficient Semantic Segmentation
Methods: From Table II and Table III, we can see that
SAMNet outperforms efficient semantic segmentation methods
[65]–[67] by a large margin, with fewer parameters, fewer
FLOPs, and faster speed. It is interesting to find that efficient
semantic segmentation methods perform worse than baselines
based on lightweight backbones. This implies that efficient
semantic segmentation methods are heavily tuned for semantic
segmentation and are thus unsuitable for directly applying to
SOD. Hence, lightweight SOD is an essential problem and
should get more attention from this community.

d) Qualitative comparison: In Fig. 4, we provide some
visualization examples to exhibit the superiority of SAMNet.
Although SAMNet performs slightly worse than traditional
cumbersome SOD methods, it can segment salient objects
with coherent boundaries in many challenging circumstances,
such as complicated scenarios (1st and 3rd rows), low contrast
between foreground and background (2nd and 4th rows),
large objects (5th and 6th rows), scenarios with abnormal
brightness (7th and 8th rows), and confusing natural scenarios
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TABLE IV
ABLATION STUDY FOR THE DESIGN CHOICES OF SAMNET.

No. Component ECSSD DUT-OMRON DUTS-TE HKU-IS SOD THUR15K
MB CA SA PP IP Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

0 0.891 0.075 0.750 0.079 0.779 0.077 0.877 0.062 0.791 0.149 0.749 0.089
1 ! 0.904 0.068 0.767 0.076 0.792 0.074 0.888 0.058 0.797 0.142 0.757 0.090
2 ! ! 0.903 0.066 0.773 0.074 0.795 0.071 0.892 0.056 0.803 0.138 0.759 0.086
3 ! ! 0.902 0.065 0.769 0.072 0.797 0.071 0.889 0.056 0.807 0.138 0.758 0.087
4 ! ! ! 0.905 0.063 0.766 0.072 0.802 0.068 0.892 0.055 0.795 0.135 0.761 0.085
5 ! ! ! ! 0.909 0.060 0.769 0.072 0.802 0.069 0.894 0.053 0.810 0.134 0.761 0.086
6 ! ! ! ! ! 0.925 0.053 0.797 0.065 0.835 0.058 0.915 0.045 0.833 0.123 0.785 0.077
* We use the vanilla single branch module as the baseline (No. 0). Here, “MB”, “CA”, “SA”, “PP”, and “IP” refer to the simple multi-branch module (F ), channel-wise

attention (FD), spatial attention (FS ), pyramid pooling, and ImageNet [70] pretraining, respectively. When incorporating both channel attention and spatial attention,
we reach the stereoscopic attention mechanism (F V ).

TABLE V
ABLATION STUDY FOR THE CONFIGURATIONS OF SAMNET.

Stage Configuration ECSSD DUT-OMRON DUTS-TE HKU-IS SOD THUR15K
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

Default Configuration 0.909 0.060 0.769 0.072 0.802 0.069 0.894 0.053 0.810 0.134 0.761 0.086

Dilation rates

1− 4 1, 2 0.907 0.063 0.769 0.071 0.802 0.068 0.893 0.054 0.803 0.136 0.761 0.085
1− 4 1, 2, 3, 4 0.908 0.063 0.777 0.071 0.804 0.069 0.893 0.055 0.792 0.145 0.765 0.083
1− 4 1, 2, 4, 8 0.905 0.064 0.777 0.070 0.807 0.068 0.892 0.055 0.803 0.141 0.765 0.084
5 1, 2, 3 0.904 0.064 0.772 0.074 0.800 0.072 0.890 0.056 0.800 0.144 0.765 0.086
5 1, 2, 3, 4 0.904 0.065 0.772 0.073 0.798 0.072 0.893 0.054 0.801 0.139 0.762 0.084

#Modules

3 2 0.907 0.063 0.770 0.070 0.798 0.068 0.890 0.055 0.798 0.142 0.759 0.086
4 5 0.908 0.063 0.774 0.071 0.801 0.068 0.894 0.054 0.808 0.133 0.763 0.084
4 7 0.910 0.062 0.767 0.073 0.801 0.069 0.894 0.053 0.812 0.138 0.760 0.086
5 2 0.910 0.061 0.770 0.071 0.798 0.069 0.894 0.053 0.804 0.136 0.761 0.084
5 4 0.903 0.064 0.776 0.070 0.803 0.067 0.893 0.054 0.790 0.139 0.763 0.083

#Filters ALL ×0.75 0.899 0.069 0.765 0.074 0.784 0.074 0.883 0.059 0.786 0.144 0.753 0.089
ALL ×1.25 0.911 0.061 0.779 0.070 0.809 0.067 0.897 0.053 0.808 0.132 0.765 0.084

* “#Modules” represents the number of SAM modules in each stage. “#Filters” denotes the number of convolution filters (i.e., channel), and “×k” means that
we multiply the number of filters in SAMNet by a factor of k. Note that all experiments here are trained from scratch.

(9th row). Combined with the lightweight and efficient nature
of SAMNet, it has the potential to promote real-world SOD
applications.

C. Ablation Study

In this section, we conduct ablation study to demonstrate
the effectiveness of the proposed module components and
the parameter configurations of SAMNet. The experimental
settings follow those in Section IV-B.

a) Proposed Module Components: Table IV shows the
ablation study results for the proposed module components.
The proposed SAM module is designed by carefully com-
bining these basic components into a nontrivial module for
effective and efficient multi-scale learning. Table IV suggests
that the performance is gradually boosted by adding each com-
ponent into the framework. Besides, the comparison between
No. 0 and No. 5 demonstrates the superiority of the proposed
solution compared with the baseline, where the performance
gap comes solely from our contributions because two models
are both trained from scratch without the ImageNet [70]
pretraining.

b) Configurations of SAMNet: Table V shows the ab-
lation study results for different network configurations. It
is interesting to find that the proposed SAMNet is robust
to the slight changes in configurations. Introducing more
parameters will lead to better performance, such as increasing
the number of convolution filters, but this is orthogonal to our

goal of lightweight SOD. Our default setting of SAMNet is
set by considering the trade-off between effectiveness and
lightweight restriction.

V. CONCLUSION

Instead of only considering accuracy, this paper focuses
on lightweight SOD that trades off among accuracy, effi-
ciency, parameter numbers, and FLOPs. We propose a novel
SAM module, which enables small networks to effectively
encode both high-level features and low-level details. Incor-
porating the SAM module, the proposed SAMNet achieves
comparable performances with state-of-the-art SOD methods
that use significantly more parameters, while saving several
orders of magnitude overhead. Such excellent trade-off be-
tween performance and efficiency makes SAMNet possible to
provide high-accuracy SOD in resource-limited environments,
e.g., mobile devices. SAMNet also clearly outperforms other
well-known lightweight networks in image classification [38]–
[41] and semantic segmentation [65]–[67], suggesting that
lightweight SOD is worth studying and should be set up
as a separate research field. To the best of our knowledge,
SAMNet is the first lightweight SOD method that is expected
to pave a new path for SOD. Through this work, we want to
arouse the research for lightweight SOD that would promote
more practical SOD applications. In the future, we plan
to apply the weight quantization and network compression
techniques to boost SAMNet’s CPU speed of 5fps for real-
time performance.
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