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Abstract—Few-shot semantic segmentation (FSS) aims to seg-
ment specific semantic classes in a query image using only a few
annotated support samples. While FSS has gained significant
attention in natural image processing, it remains underexplored
in the more challenging domain of remote sensing images
(RSIs). Existing FSS approaches for RSIs primarily focus on
enhancing feature representations of support or query images
through hierarchical/multi-level feature fusion. However, unlike
fully supervised segmentation that relies on feature extraction
and optimization, FSS requires segmenting the query image based
on its relations with annotated support images. To address this
need, we propose the concept of Hierarchical Relation Learning
(HRL) to explore the intrinsic support-query relations, allowing
for the direct refinement of target object appearances in the
query image. Specifically, we propose a Hierarchical Relation
Network (HRNet), which performs single-scale relation extraction
at each network hierarchy and multi-scale relation aggregation
across hierarchies. In addition, we construct a Bidirectional
Hierarchical Loss (BHLoss) to guide HRNet training, providing
targeted supervision at each hierarchy in both top-down and
bottom-up directions, thus facilitating robust multi-scale relation
learning across hierarchies. Comprehensive experiments on the
iSAID-5i, DLRSD-5i, and LoveDA-2i datasets demonstrate the
superiority of the proposed HRL. The code will be available at
https://github.com/XinnHe/HRL.

Index Terms—Few-shot semantic segmentation, few-shot seg-
mentation, remote sensing, hierarchical relation learning.

I. INTRODUCTION

SEMANTIC segmentation in remote sensing images (RSIs)
aims to classify each pixel according to the semantic
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category of ground objects, playing a crucial role in studying
environmental changes on the earth’s surface and human
activity patterns. In recent years, deep learning, powered by
large, fine-grained labeled datasets, has significantly advanced
this task, with notable success in applications such as land
cover classification [1]–[3], environmental monitoring [4], and
agricultural management [5], [6]. However, RSIs typically
cover vast geographic areas and contain a wide variety of
objects and terrains, making it impractical to manually label
all semantic categories at scale. To address this challenge, few-
shot segmentation (FSS) based on meta-learning was proposed
[7], which leverages a few annotated examples as support
data to segment novel classes in query images. FSS can
significantly reduce annotation costs and enable models to
adapt quickly to novel classes or unseen domains. This is
particularly important for real-world RSI applications where
annotated data is scarce or rapidly changing, such as post-
disaster response mapping (e.g., landslides, floods, collapsed
buildings), rare object detection (e.g., illegal open-pit mines,
illegal buildings or temporary shelters), and cross-regional
fine-grained crop type segmentation. In these scenarios, FSS
not only enhances learning efficiency, but also improves the
generalization ability and robustness of segmentation models
under limited supervision.

FSS in natural images has made significant progress, par-
ticularly with prototype-based and pixel-wise methods. As
shown in Fig. 1(a), the general process of prototype-based FSS
methods involves first extracting prototypes from the support
samples [8]–[10], which capture representative information
about the target semantic classes. These prototypes are then
used as prior cues to explore the relation/similarity between the
support and query features, typically using Euclidean distance
[8], [9], cosine distance [11]–[13], or feature concatenation
[14]–[16]. Accurate support-query relation leads to reasonable
predictions for the query images. Pixel-level methods (see
Fig. 1(b)) take a more direct approach by performing pixel-
wise support-query matching through attention mechanisms
[17]–[20] or specialized convolutions [21]–[23], effectively
preserving critical spatial structural information. In addition,
some studies [24], [25] utilize vision transformers to enhance
the representation of support prototypes by incorporating
query features (see Fig. 1(c)).

Compared to FSS in natural images, research on FSS
in RSIs is relatively lagging and insufficient. The primary
challenge lies in the prevalent high inter-class similarity,
large intra-class heterogeneity, and significant scale varia-
tions within RSIs (see Fig. 2). These factors seriously affect
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Fig. 1. Our hierarchical relation-based framework (d) in comparison with existing prototype-based (a), pixel-level based (b) and transformer-based (c)
frameworks for FSS in RSIs. The inputs consist of the support image Is, support mask Ms, and query image Iq , with the output being the support-query
relation R. Here, MAP denotes masked average pooling [10]–[12]. SRE represents Single-scale Relation Extraction, which generates support-query relations
R0, R1, R2, and R3 at different hierarchies. RP represents Relation Processor, which consists of a Transformer layer and a Convolutional Layer to achieve
local-to-global pixel-level relation self-alignment. MRA represents Multi-scale Relation Aggregation, and BHLoss stands for Bidirectional Hierarchical Loss.

the effectiveness of traditional FSS frameworks, weakening
the representativeness of prototype features and substantially
increasing the difficulty of support-query feature matching
under multi-scale conditions. As a result, models often fail
to accurately activate the target regions in query images and
even produces obvious segmentation errors.

In fully supervised semantic segmentation, to address the
above characteristics of RSIs, it is common to rely on
hierarchical/multi-level feature learning [26]–[32], where both
high-level semantic information and low-level fine-grained
details. The classical U-Net [33] and its variants [34]–[36] are
representative approaches. They integrate semantic and fine-
grained features across multiple hierarchies/levels in a bottom-
up manner, significantly enhancing the feature representation
capability of RSIs [37]–[46].

Inspired by this, recent studies have incorporated multi-
level feature aggregation into FSS [47]–[50]. These methods
typically adopt a cross-attention mechanism to enhance the
perception of query features to target regions that are consis-
tent with the objects in the support image, by modeling the
similarity between support and query features and incorporat-
ing the known spatial cues from the support mask. Then, query
features guided by support information at different scales are
fused from bottom to top in the decoder. It is important to
note that FSS differs fundamentally from fully supervised
segmentation. While fully supervised methods aim to extract
semantic representations from a single image, FSS relies on
modeling the relation between the query and support images to
identify regions corresponding to novel object classes. There-
fore, the multi-level feature aggregation paradigm commonly
used in fully supervised segmentation [41]–[46] may not be
sufficient for FSS in RSIs. On the one hand, it is prone
to the accumulation and propagation of erroneous support-
query correlation clues within query features through layers,
particularly when low-level features are rich in detail but lack
semantic clarity. On the other hand, integrating deep (high-
level) features may impair the generalization ability of the
model, especially in few-shot tasks involving cross-region or
cross-class segmentation [10], [15]. More importantly, these
methods primarily focus on enhancing feature representations,
rather than explicitly modeling or refining the support-query
relations and the shape of target objects, which is particularly
insufficient in complex RSI scenarios.

To address the above issues, we propose Hierarchical Re-
lation Learning (HRL) for the FSS task in RSIs. HRL aims
to directly refine the shape of target objects in query images by
explicitly modeling and integrating hierarchical support-query
relations. The framework is shown in Fig. 1(d). Specifically,
we construct a Hierarchical Relation Network (HRNet)
using the mid-layer features with generalization capability of
the backbone. HRNet contains four independent Single-scale
Relation Extraction (SRE) modules and a Multi-scale Relation
Aggregation (MRA) module. For each network hierarchy, SRE
receives prototypes, query features, and training-free priors to
capture single-scale support-query relations via the Relation
Processor (RP), which consists of a deformable transformer
layer and a convolutional layer. Then, MRA aggregates these
multi-scale relations across hierarchies in a parallel manner to
avoid the accumulation of erroneous relations, and leverages
RP to effectively mine discriminative relation cues to enhance
relation reliability. Furthermore, we introduce a Bidirectional
Hierarchical Loss (BHLoss) to support the training of HRNet
by providing appropriate supervision at each network hier-
archy in both top-down and bottom-up directions. BHLoss
ensures that HRNet learns specific scale information at each
hierarchy while also capturing complementary multi-scale
information across multiple hierarchies, thereby enhancing the
diversity and robustness of hierarchical relation representa-
tions.

In summary, our contributions are as follows:
• We propose Hierarchical Relation Learning (HRL) to

explore hierarchical support-query relations for FSS in
RSIs, moving beyond traditional feature optimization to
directly refine target object shapes in query images.

• We construct a Hierarchical Relation Network (HRNet)
for HRL, enabling single-scale support-query relation
extraction and multi-scale relation integration across hi-
erarchical levels.

• We introduce a Bidirectional Hierarchical Loss to support
HRNet training by enforcing supervision on the support-
query relations at each hierarchy, enhancing the diversity
and robustness of hierarchical relation representations.

Extensive experiments on iSAID-5i [51], DLRSD-5i [52], and
LoveDA-2i [53] datasets demonstrate that the proposed HRL
achieves state-of-the-art performance for FSS in RSIs, offering
a new perspective for this field.
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Fig. 2. Comparison between natural image segmentation and remote sensing image segmentation. Above the dashed line are natural image samples from
PASCAL VOC [54] and MS-COCO [55] datasets, and below the dotted line are remote sensing image samples from the iSAID dataset [51]. Natural images
are typically captured based on subjective human preferences, with each image centered around a distinct visual subject, such as a specific object, person,
or scene that dominates the composition. This clear visual structure allows traditional FSS methods to extract prototypes and perform feature matching more
directly. In contrast, RSIs are acquired indiscriminately from overhead perspectives, without a clear visual subject. They encompass a wide range of ground
objects, resulting in more complex spatial layouts and semantic ambiguity. Within these remote sensing classes, “Tennis Court” and “Basketball Court” exhibit
high inter-class similarity due to their nearly identical appearances, differing only in subtle line markings. Similarly, “Large Vehicle” and “Small Vehicle” often
appear together and share visual characteristics, further complicating class distinction. Moreover, classes like “Roundabout”, “Baseball Diamond”, “Ship”, and
“Harbor” display substantial large intra-class heterogeneity in shape, structure and color. Furthermore, due to the differences in ground sampling distances,
remote sensing objects of the same class often display significant scale variations. These factors collectively increase the difficulty of FSS.

II. RELATED WORK

A. Few-shot Semantic Segmentation for Natural Images

We first review FSS works for natural images. As shown
in Fig. 1 and discussed in §I, existing FSS methods can
be briefly divided into three categories. Prototype-based FSS
methods (see Fig. 1(a)) typically follow a workflow that first
extracts prototypes from the support data and then computes
the relationor similarity between these support prototypes and
the query features. In [8], [9], prototypes are defined as the
mean vectors of embedded support features. Methods such as
[10]–[12], [14], [56], [57] compute a prototype for each class
using the masked average pooling (MAP), ensuring that the
prototypes accurately represent class features, without inter-
ference from other class pixels. However, MAP compresses
the spatial features of objects, which can lead to potentially
causing semantic ambiguity across different parts of an object.
Some works address this by generating prototypes through
methods such as the expectation maximization (EM) algorithm
[16], 1D pooling operations [58], or clustering algorithms [59],
effectively enhancing feature representations.

However, by compressing feature maps into prototypes,
prototype-based methods do not fully resolve the loss of spatial
information. To address this limitation, pixel-level methods
(see Fig. 1(b)) have been proposed, gaining increased attention
for their superior performance. For example, Wang et al. [17]
introduced a democratic attention mechanism to establish
robust support-query relations, thereby activating more fore-
ground target regions. CyCTR [19] performs self-alignment of
query features and cross-alignment of support-query features
based on vision transformer blocks, effectively integrating

relevant support information into the query while capturing its
context. DCAMA [20] adopts self-attention to predict query
labels as a weighted sum of the labels of all the support
feature pixels, with weights based on support-query similarity.
Unlike DCAMA [20], DAM [23] designs a bidirectional 3D
convolution to enhance the support-query similarity matrix,
followed by a query mask created by cascading this matrix
with lower-level query features.

Combining the strengths of both prototype-based and pixel-
level methods, ProtoFormer [24] and SCTrans [25] treat the
prototype as a conditional query, with query features serv-
ing as the key and value, inputting these elements into the
transformer decoder for dense calculation (see Fig. 1(c)).
This approach equips the conditional query with semantic
awareness of the target class in the query image, resulting
in improved FSS performance.

Unlike the feature optimization approaches used in the
methods above, we propose HRL to extract and aggregate
hierarchical support-query relations from both network design
and training loss perspectives, enabling direct refinement of
target object appearances.

B. Few-shot Semantic Segmentation for RSIs

In recent years, FSS in RSIs has gained traction, focusing
primarily on support-query matching strategies [13], [60]–[62]
and prototype updating mechanisms [63]–[65]. Yao et al. [60]
introduced the first FSS method for RSIs, named the Scale-
aware Detailed Matching network (SDM). In particular, SDM
employs Prototype Matching Modules (PMMs) [16] to gener-
ate multiple support prototypes and then calculates the similar-
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ity between these prototypes and query features. Additionally,
a scale-aware loss is designed to enhance learning for small
objects. PCFNet [61] combines Euclidean distance with cosine
similarity. Inspired by SDM and rotational invariant, FRINet
[62] performs the rotation-adaptive matching of prototypes
with query features from four directions.

R2Net [63] dynamically updates global prototypes to re-
fine local prototypes, reducing errors in prototype activa-
tion, and decouples foreground and background information
to minimize object confusion. Similarly, DMNet [66] main-
tains a meta-prototype memory for foreground and back-
ground, which stores updated semantics for current class
prototypes during training and suppresses activation of pre-
viously seen classes during testing. DMML [67] strengthens
the original prototypes by applying a consistency principle
with query features, using the similarity between enhanced
pseudo-prototypes and original prototypes as a weight to
refine the original prototype. Lang et al. [64] progressively
parsed multiple valuable sub-regions from the support features
to produce more representative prototypes. MS2A2Net [50]
leverages attention mechanisms to extract the support-query
relations, and employs a stepwise U-shaped fusion strategy
for enhancement. However, this fusion process can accumulate
erroneous relation information from bottom to top. In contrast,
our HRNet parallelly extracts and aggregates hierarchical,
multi-scale relations to directly optimize multiple object scales
in the query image, reducing interference from erroneous in-
formation. Furthermore, we introduce BHLoss to supervise the
learning of multi-scale relations, providing a robust guarantee
for capturing diverse and reliable relation representations.

C. Semantic Segmentation for RSIs

Semantic segmentation for RSIs requires precise classifica-
tion of each pixel into categories such as buildings, grass,
vehicles, water, vegetation, and other surface objects/stuff.
To improve segmentation accuracy and efficiency in RSIs,
researchers have developed novel methods aimed at enhancing
global context aggregation. Traditional convolutional neural
network (CNN)-based methods indirectly capture global con-
text through techniques like dilated convolutions [68], [69],
pooling operations [69], [70], superpixel clustering [71], and
attention mechanisms [39], [72]–[75]. However, these meth-
ods are often limited when dealing with the complexity of
remote sensing scenes [76]. Recently, vision transformers have
gained prominence in computer vision due to their innate
global modeling capabilities. For RSI semantic segmentation,
a common approach is to use a hybrid framework combining
CNNs and transformers, where CNNs supply essential spatial
information and transformers provide global semantic context
[42], [45], [77]–[80]. For instance, Xu et al. [81] embedded
adaptive transformer-based fusion modules within a dense
CNN structure to enhance foreground saliency and reduce
background noise. MSGCNet [46] utilizes a window-based
transformer to capture global information from both spatial
and channel dimensions. In multi-modality RSIs, FTransUNet
[27] has demonstrated that transformers effectively facilitate
cross-modality information transfer and establish long-range

relationships. Leveraging the strengths of both CNNs and
transformers, we employ them jointly to extract support-query
relations for FSS in RSIs.

III. METHODOLOGY

A. Preliminaries

FSS aims to generalize a model trained on seen/base classes
to segment unseen/novel classes using only a few support
samples. Under the standard FSS setup [8], which adopts
the episode-based meta-learning paradigm, the training set
Dbase and the test set Dnovel contain samples from the
base classes Cbase and novel classes Cnovel, respectively, with
Cbase ∩ Cnovel = ∅. The samples in Dbase and Dnovel

are independently organized into a series of episodes. Each
episode (S,Q)c for a specific class c consists of a support
set S and a query set Q. For the K-shot segmentation, the
support set S contains K image-mask pairs, while the query
set Q consists of a single pair. These can be expressed as
S =

{(
Iks ,M

k
s

)}K

k=1
and Q = {(Iq,Mq)}, where k indexes

the image-mask pairs in S. Notably, during meta-training, the
query mask Mq is used to compute the segmentation loss,
but it is unavailable during meta-testing. The support masks
Mk

s , however, remains accessible throughout. The goal of FSS
is to learn a robust mapping function f : (S, Iq) → Mq on
Dbase, enabling the segmentation of novel classes in Dnovel.
For simplicity, we describe our method in the 1-shot setting,
where S = {(Is,Ms)}.

B. Method Overview

The importance of multi-level/hierarchical learning in fully-
supervised segmentation tasks is well-established, as demon-
strated by numerous studies on multi-level feature fusion
strategies [26]–[32] and encoder-decoder architectures [33]–
[36]. However, hierarchical learning has received limited atten-
tion in FSS. Existing approaches typically employ multi-level
feature fusion, exploring the correspondence between support
features/prototypes and query features at a single level [47]–
[50]. Since the essence of FSS lies in extracting support-query
relations to segment novel target classes in query images,
this paper directly investigates Hierarchical Relation Learning
(HRL), which offers a more reasonable and intuitive solu-
tion than multi-level feature fusion. Specifically, our efforts
include both network design and training strategy, namely
the Hierarchical Relation Network (HRNet) and Bidirectional
Hierarchical Loss (BHLoss). HRNet extracts and aggregates
support-query relations across multiple hierarchies (in §III-C),
while BHLoss encourages the model to focus on learning
relations at different scales at different hierarchies by imposing
appropriate constraints at each hierarchy (in §III-D). These two
components work synergistically to enhance FSS performance
for RSIs. The overall pipeline of our HRL is shown in Fig. 3.

C. Hierarchical Relation Network

As the network for HRL, HRNet consists of multiple
parallel relation extraction branches and a multi-scale rela-
tion aggregation branch. The former focuses on single-scale
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Fig. 3. Overall Pipeline of the proposed HRL. For clarity, this figure is presented in the 1-shot setting. The proposed HRNet is given on the left. We
extract N hierarchies of support/query features from the frozen backbone network to preserve information generalizability and diversity. Each hierarchy of
support-query feature pairs first accomplishes single-scale relation extraction to obtain a group of relations {Ri}Ni=1. Then, they are concatenated and fed
into multi-scale relation aggregation to realize cross-hierarchical interactions of relation information, thereby directly segmenting novel classes in the query
image. The structure of the bidirectional hierarchical loss is shown on the right. The supervision signal of the current hierarchy can be approximated by the
sum of hierarchies lower than it and the sum of hierarchies higher than it. Please refer to §III-C and §III-D for more details.

support-query relation extraction at each branch, with multiple
parallel branches extracting multi-scale/hierarchical support-
query relations. The latter aggregates hierarchical support-
query relations generated by the former, to learn a more
comprehensive representation of support-query relations.

The mid-level features of the backbone (e.g., Stage-3 and
Stage-4 in ResNet-50 [82]) retain the ability to generalize
to novel classes, providing a good basis for implementing
relation matching between support and query images [15]. In
previous FSS works [10], [63], it has been effective to freeze
the backbone parameters and use the fused features from
Stage-3 and Stage-4 as inputs to the support/query stream.
This strategy ensures the generalization ability of features,
thereby effective identifying target regions of novel classes.
However, relying solely on features extracted by Stage-3 and
Stage-4 still has certain limitations in scale expression. Con-
sidering that deeper networks have larger receptive fields [83],
which is beneficial for capturing a wider range of contextual
information. Thus, we add three standard residual blocks after
Stage-4 to construct an extended backbone. Subsequently, the
output of Stage-3 is fused with the outputs of Stage-4 and
three standard residual blocks (Res-block1, Res-block2, Res-
block3) to form support/query features from four hierarchies.
This design not only preserves the generalization ability of
mid-level features but also enriches the representation with
multi-scale contextual information from subsequent layers,
thus providing a more structured and discriminative feature
foundation for subsequent support-query relation modeling.

Taking the 1-shot setup as an example, the support image
Is and query image Iq in an episode are fed into the extended

backbone of shared parameters to obtain the feature pairs of
the N hierarchies (N = 4), where the i-th can be represented
as (Fs

i ,F
q
i ) (i ∈ {1, 2, · · · , N}), respectively. The size of

each feature map is H × W × C. For each hierarchy, the
support prototype pi is obtained from the support feature
Fs

i via masked average pooling (MAP) [10]–[12], written as
pi = MAP(Fs

i ,Ms) ∈ R1×1×C . Besides, the prior mask
Mprior is derived from the cosine similarity between the high-
level support and query features to assist in recognizing targets
in the query image [15]. Then, the query feature Fq

i , the
prototype pi corresponding to the support feature Fs

i , and the
prior mask Mprior are concatenated to obtain the feature Fi,
which can be expressed as Fi = Concat(Fq

i ,p
′
i,Mprior) ∈

RH×W×(2C+1). Here, p′
i is the prototype feature of pi after

spatial dimension expansion.

Single-scale relation extraction. Subsequently, Fi is
fed to the relation processor to extract the corresponding
support-query relation Ri via self-aligned calculation. The
relation processor contains a 3 × 3 convolution layer and a
deformable transformer layer [84], [85] to take into account
both local and global relation modeling. The convolution
layer captures local relations Rlocal

i ∈ RH×W×C through
weighted sum computation within the convolution kernel.
Then, Rlocal

i is flattened into a 1-dimensional sequence as
the input to the deformable transformer, which means that
each spatial position is considered as a token. Unlike stan-
dard transformer that compute global self-attention across
all tokens, the deformable transformer dynamically selects a
small number of the most relevant spatial locations through
a learnable offset and only calculates attention for these key
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sampling points. This strategy significantly reduces compu-
tational complexity, while adaptively accommodating scale
variations of target regions between the support and query
images, reducing redundant and incorrect feature matching,
thereby achieving more precise global relation representation.
This spread mechanism from local extraction to global pixel-
level self-alignment accomplishes progressive enhancement of
the relation representation.

Multi-scale relation aggregation. Based on our network
design, the output of each hierarchy implies the single-scale
relation between the support and query features. Fusing multi-
scale features is a well-recognized and effective strategy
for enhancing feature robustness and diversity in computer
vision [33]–[36]. Here, we integrate multi-scale relations from
different hierarchies, expecting to gain high-quality relation
representations. Specifically, we concatenate support-query
relations from all hierarchies to derive the multi-scale relation
R = Concat({Ri}Ni=1), followed by a relation processor for
refinement. Then, a residual structure is accessed to prevent
degradation of the relation representation, denoted as R′ =
RelationProcessor(R) and R′′ = R′ + Conv(R′). Finally,
we feed the refined relation R′′ into the segmentation head to
shape the target region of the novel class in the query image,
obtaining the prediction mask P. Here, the segmentation head
consists of a 3×3 convolution layer, a ReLU layer, and a 1×1
convolution layer. During training, the prediction mask P is
supervised by Mq with a standard cross-entropy loss.

D. Bidirectional Hierarchical Loss

As mentioned before, we expect the model to mine the
whole target regions in the query image by aggregating diverse
support-query relations from different network hierarchies,
thus obtaining better predictions through multi-scale relation
information integration and correction. Exploring hierarchi-
cal relations allows the model to learn more discriminative
representations from remote sensing objects with high intra-
class variation and high inter-class similarity. To this end, we
propose BHLoss to efficiently impose proper supervision at
each hierarchy of HRNet to achieve the above goal.

Along this line, the i-th hierarchy should be equipped with
a segmentation head φi(·) whose output can be expressed as
Hi = φi(Ri). Accordingly, the ground-truth Mq is decom-
posed into N binary masks corresponding to different object
scales, serving as the training goals for each hierarchy, i.e.,

Mq =

N∑
i=1

Mq
i . (1)

At this point, relation information mining of a specific scale
is achieved by training φi(·) through a binary cross-entropy
(BCE) loss such that Hi ∼ Mq

i , expressed as,

Li = BCE(Hi,M
q
i )

= −Mq
i logHi − (1−Mq

i ) log(1−Hi).
(2)

However, it is difficult to manually decompose Mq into
different scales, which leads to the failure of directly super-
vising the output of each hierarchy. The absence of an explicit
Mq

i makes Eq. (2) unworkable. Observing Eq. (1), it is easy to

TABLE I
NOVEL CLASSES FOR DIFFERENT DATASETS.

Split
Novel classes

iSAID-5i DLRSD-5i LoveDA-2i

0

Ship Airplane

Building
Road

Storage Tank Bare Soil
Baseball Diamond Building

Tennis Court Car
Basketball Court Chaparral

1

Ground Track Field Court

Water
Barren

Bridge Dock
Large Vehicle Field
Small Vehicle Grass

Helicopter Mobile Home

2

Swimming pool Pavement

Forest
Agriculture

Roundabout Sand
Soccer Ball Field Sea

Plane Ship
Harbor Tank

notice that the decomposed binary masks Mq
i of one hierarchy

can be approximated by Mq and the prediction masks of other
hierarchies, denoted as

Mq
i ∼ Mq −

∑
i ̸=j

Hj . (3)

Since Hi approximates Mq
i , Eq. (3) can be converted to Mq ∼∑N

i=1 Hi, notating the latter as M̂q . The overall training loss
is written as L = L(M̂q,Mq), so that the gradient for the i-th
hierarchy can be computed as

∂(L)
∂ (Hi)

=
∂(L(M̂q,Mq))

∂ (Hi)

=
∂(L(M̂q,Mq))

∂(M̂q)
· ∂(M̂q)

∂ (Hi)

=
∂(L(M̂q,Mq))

∂(M̂q)
·
∂(
∑N

i=1 Hi)

∂ (Hi)

=
∂(L(M̂q,Mq))

∂(M̂q)
.

(4)

Unfortunately, the extrapolation based on Eq. (4) intuitively
demonstrates that the gradient of the overall loss is indepen-
dent of the output of each hierarchy, i.e., any two different
hierarchies i and j have equal loss gradients. That is, it is not
possible to focus on different scales at different hierarchies,
which is contrary to the purpose of imposing appropriate
supervision signals at each network hierarchy.

To solve this problem, we propose a bidirectional approxi-
mation method to estimate the supervision signal Mq

i of the i-
th hierarchy. Mq

i satisfies both conditions, approximating with
the sum of the hierarchies lower than i and the sum of the
hierarchies higher than i, as denoted by

Mq
i ∼ Mq −

∑
j<i

Hj ,

Mq
i ∼ Mq −

∑
j>i

Hj .
(5)
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Fig. 4. Visualization of the heat maps before and after adding the BHLoss, with the 1-shot setup and ResNet-50 [82] as the backbone.

TABLE II
ABLATION STUDY OF THE RELATION PROCESSOR IN RESNET-50 [82] AS

BACKBONE.

K-Shot Baseline
(Convs)

Relation
Processor

mIoU

Split0 Split1 Split2 Mean

1-shot ✓ 39.57 24.92 31.48 31.99
✓ 40.20 25.19 32.73 32.71

5-shot ✓ 45.06 29.76 38.05 37.62
✓ 45.60 30.51 39.02 38.38

Such an approach allows Mq
i to approximate real supervision

and be trainable. Taking the second hierarchy as an example,
Mq

2 needs to approximate Mq − H1 while approximating
Mq − H3 − H4. After a simple transformation, the loss of
the second hierarchy can be written as{

L−
2 = BCE(H1 +H2,Mq),

L+
2 = BCE(H2 +H3 +H4,Mq).

(6)

The loss for other hierarchies can be derived in a similar way.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We verify the performance of HRL on iSAID-
5i [51], DLRSD-5i [52], and LoveDA-2i [53] datasets, with
novel classes are listed in Table I.

iSAID-5i dataset: iSAID [51] is a challenging, well-
labelled, high-resolution remote sensing image dataset avail-
able for semantic and instance segmentation tasks. It contains
655,451 object instances across 15 classes. Following previous
works [60]–[65], we divide the classes into 3 splits, each
containing five classes. In each experiment, we use one split
as novel classes for testing, while the other two splits serve as
base classes for training. Additionally, we use 512×512 pixel
cropped images, consistent with [63].

TABLE III
ABLATION STUDY ABOUT THE HRNET UNDER THE 5-SHOT SETTING WITH

RESNET-50 [82] AS THE BACKBONE.

Split
Hierarchy Indices (SRE)

Results (MRA)
1st 2nd 3rd 4th

0

✓ 45.60
✓ 45.66(+0.06)

✓ ✓ 47.29(+1.69)

✓ ✓ ✓ 47.51(+1.91)

✓ ✓ ✓ ✓ 48.10(+2.50)

1

✓ 30.51
✓ 31.21(+0.70)

✓ ✓ 31.22(+0.71)

✓ ✓ ✓ 31.53(+1.02)

✓ ✓ ✓ ✓ 32.18(+1.67)

2

✓ 39.02
✓ 39.51(+0.49)

✓ ✓ 41.11(+2.09)

✓ ✓ ✓ 41.91(+2.89)

✓ ✓ ✓ ✓ 42.26(+3.24)

TABLE IV
ABLATION STUDY ON THE HIERARCHICAL RELATION INTEGRATION
APPROACH IN HRNET WITH RESNET-50 [82] AS THE BACKBONE.

K-Shot Aggregation
Approach

mIoU

Split0 Split1 Split2 Mean

1-shot Parallel 40.96 26.95 34.03 33.98
Bottom-up 40.25 26.31 33.39 33.32

5-shot Parallel 48.10 32.18 42.26 40.85
Bottom-up 46.58 29.98 41.27 39.28

DLRSD-5i dataset: DLRSD [52] is a publicly available
remote sensing image dataset for training and evaluating multi-
label image retrieval and semantic segmentation models. It
comprises 2,100 RGB images, each sized 256×256 pixels,
spanning 17 object classes. Consistent with the setting in [86],
the first 15 object classes are divided into three splits.
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TABLE V
EFFECT OF THE NUMBER OF SUPPORT IMAGES WHEN USING RESNET-50

[82] AS THE BACKBONE AND THE INPUT RESOLUTION OF 512×512.

K-Shot
mIoU

FLOPs
Split0 Split1 Split2 Mean

1 41.50 27.84 34.51 34.62 468.8G
2 44.56 30.31 37.57 37.48 716.9G
3 45.60 31.60 39.91 39.04 964.9G
4 47.12 32.36 30.23 39.90 1213.0G
5 49.01 32.86 43.26 41.71 1461.0G

TABLE VI
ABLATION STUDY OF BIDIRECTIONAL HIERARCHICAL LOSS WITH

RESNET-50 [82] AS THE BACKBONE.

K-Shot SH
Loss

BH
Loss

mIoU

Split0 Split1 Split2 Mean

1-shot

40.96 26.95 34.03 33.98
✓↑ 40.57 27.42 34.36 34.12
✓↓ 40.64 27.38 34.09 34.01

✓ 41.50 27.84 34.51 34.62

5-shot

48.10 32.18 42.26 40.85
✓↑ 47.85 32.37 42.74 40.11
✓↓ 47.42 32.52 42.81 40.92

✓ 49.01 32.86 43.26 41.71

LoveDA-2i dataset: LoveDA [53] contains 5,987 optical
RSIs with a resolution of 1024×1024 pixels, showcasing
urban and rural scenes from Wuhan, Changzhou, and Nanjing
in China. These images contain 166,768 objects across 7
classes: Background, Building, Road, Water, Barren, Forest,
and Agriculture. Following the setup in [66], we divide
all classes except Background into three splits and employ
cropped images of 473×473 pixels.

2) Implementation Details: Our model is implemented in
the PyTorch framework [87] and runs on two GeForce RTX
2080 GPUs. The transformer layer in the relation processor
is configured with 8 heads and an embedding dimension of
256. Its parameters are optimized using the AdamW optimizer
with an initial learning rate of 10−4, while the remaining
parameters use the SGD optimizer with an initial learning rate
of 0.001. The batch size and number of epochs are set to 8 and
12, respectively. For the iSAID-5i [51], DLRSD-5i [52], and
LoveDA-2i [53] datasets, we follow the training and testing
configurations in [63], [86], and [66], respectively, including
the image enhancement techniques, test-episode amount, test-
independent run counts, the random seeding, etc.

3) Evaluation metrics: The mean intersection over union
(mIoU) and foreground-background IoU (FB-IoU) are two
commonly-used evaluation metrics for semantic segmentation.
mIoU is calculated as the average IoU of x novel classes in
each split (x = 5 for iSAID-5i [51] and DLRSD-5i [52],
x = 2 for LoveDA-2i [53]), while FB-IoU is the average
of the foreground IoU and background IoU. We use employ
metrics to comprehensively evaluate model performance.

B. Ablation Study
To clarify the benefits of each component in HRL, we

conduct rigorous ablation experiments using ResNet-50 as the
backbone on the iSAID-5i dataset [51]. Notably, the baseline
model only fuses prototype and query feature from a single
hierarchy and then directly obtains the prediction through two
standard convolution layers and a segmentation head.

1) Effects of the relation processor: We replace the two
convolution layers of the baseline with a relation processor
consisting of a convolution layer and a transformer layer. The
results are shown in Table II. Benefiting from the local infor-
mation clustering of the convolution and the global modeling
capabilities of transformer, the relation processor enables an
progressive extraction from local to global, allowing for more
comprehensive pixel-level self-relational alignment between
the support and query features. Compared to local extraction
alone, it grows by an average growth of 0.72% mIoU per split
in the 1-shot setting and 0.76% mIoU in the 5-shot setting.

2) Effects of the HRNet: Our HRNet consists of four in-
dependent single-scale relation extraction (SRE) modules and
a multi-scale relation aggregation (MRA) module. Table III
shows the experimental results for SRE from different hier-
archies and the cross-hierarchy MRA. For a single hierarchy,
i.e., without MRA, the last SRE shows a performance increase
over the first one as the depth of the network grows, but
this increase is limited, rising by only 0.06%∼0.7% mIoU. In
contrast, the introduction of MRA stimulates the refinement
of support-query relations across hierarchies and results in a
significant overall performance improvement, with gains of
2.50%, 1.67%, and 3.24% mIoU on the three splits compared
to SRE, respectively. This suggests that exploring the potential
relations among hierarchies effectively boosts the recognition
of the target in the query image. The first and third rows
of Fig. 4 visually demonstrate that MRA performs better
than each single hierarchy, suggesting its superior ability to
integrate complementary relation information from multiple
hierarchies and thus enhance segmentation accuracy.

Further, we perform ablation experiments on the approach of
aggregating hierarchical relations in HRNet. In the process of
modeling support-query relations, this bottom-up aggregation
strategy tends to cause erroneous relations formed at early
hierarchies to be progressively propagated and accumulated in
the subsequent hierarchies. In contrast, our parallel aggrega-
tion strategy can extract and integrate support-query relations
across multiple levels simultaneously. This design avoids the
reliance on a single accumulation path, thus reducing the
risk of combining incorrect relations. Table IV shows that
the parallel aggregation strategy outperforms the bottom-up
strategy across various few-shot settings, demonstrating its
effectiveness in preventing the accumulation and propagation
of incorrect relations.

3) Effects of the number of support images: Table V lists
the effect of the number of support images on FSS. It can
be observed that with more support images, the model can
learn more diverse and comprehensive reference information,
thus establishing a more robust support-query relationship and
improving the ability to recognize similar targets in the query
image. However, for every increase in K, i.e., one additional
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TABLE VII
COMPARISON OF SEGMENTATION RESULTS WITH MIOU ON THE ISAID-5i DATASET [51]. THE RESULTS OF THE COMPARISON METHODS ARE

TRANSCRIBED FROM R2NET [63]. THE BEST AND SECOND-BEST RESULTS ARE IN BOLD AND UNDERLINED, RESPECTIVELY.

Backbones Methods Pub. Years
1-shot 5-shot

Split0 Split1 Split2 Mean Split0 Split1 Split2 Mean

VGG-16

PANet [11] ICCV’2019 26.86 14.56 20.69 20.70 30.89 16.63 24.05 23.86
CANet [10] CVPR’2019 13.91 12.94 13.67 13.51 17.32 15.07 18.23 16.87

SCL [88] CVPR’2021 25.75 18.57 22.24 22.19 35.77 24.92 32.70 31.13
PEFNet [15] TPAMI’2020 28.52 17.05 18.94 21.50 37.59 23.22 30.45 30.42

NTRENet [89] CVPR’2022 25.78 20.01 19.88 21.89 38.43 24.21 28.99 30.54
DCPNet [90] CVPR’2022 28.17 16.52 22.49 22.39 39.65 22.68 29.93 30.75

BAM [14] CVPR’2022 33.97 16.88 21.47 24.09 38.46 22.76 28.81 30.01
DMML [67] TGRS’2022 24.41 18.58 19.46 20.82 28.97 21.02 22.78 24.26

SDM [60] TGRS’2022 24.52 16.31 21.01 20.61 26.73 19.97 26.10 24.27
DML [13] GRSL’2022 30.99 14.60 19.05 21.55 34.03 16.38 26.32 25.58

TBPN [91] Neuroc.’2023 27.86 12.32 18.16 19.45 32.79 16.28 24.27 24.45
PCNet [64] TGRS’2023 32.48 19.88 24.56 25.64 41.09 21.98 34.14 32.40
R2Net [63] TGRS’2023 35.27 19.93 24.63 26.61 42.06 23.52 30.06 31.88

MGANet [92] TGRS’2024 30.46 20.60 20.77 23.94 32.74 23.52 25.28 27.18
HRL (Ours) – 33.54 23.10 31.58 29.40(+2.79) 43.02 26.19 39.26 36.16(+3.76)

ResNet-50

PANet [11] ICCV’2019 27.56 17.23 24.60 23.13 36.54 16.05 26.22 26.27
CANet [10] CVPR’2019 25.51 13.50 24.45 21.15 29.32 21.85 26.91 26.03

SCL [88] CVPR’2021 34.78 22.77 31.20 29.58 41.29 25.73 37.70 34.91
PEFNet [15] TPAMI’2020 35.84 23.35 27.20 28.80 42.42 25.34 33.00 33.59

NTRENet [89] CVPR’2022 34.93 23.95 28.56 29.15 44.83 26.73 37.19 36.25
DCPNet [90] IJCAI’2022 37.83 22.86 28.92 29.87 41.52 28.18 33.43 34.38

BAM [14] CVPR’2022 39.43 21.69 28.64 29.92 43.29 27.92 38.62 36.61
DMML [67] TGRS’2022 28.45 21.02 23.46 24.31 30.61 25.23 24.08 26.18

SDM [60] TGRS’2022 27.96 21.99 26.27 25.92 28.50 22.05 31.07 28.27
DML [13] GRSL’2022 32.96 18.98 25.47 26.07 33.58 20.42 29.77 28.47

TBPN [91] Neuroc.’2023 29.33 16.84 25.47 23.88 30.98 20.42 28.07 26.49
PCNet [64] TGRS’2023 40.24 24.64 31.31 32.06 45.31 28.19 37.36 36.95
R2Net [63] TGRS’2023 41.22 21.64 35.28 32.71 46.45 25.80 39.84 37.36

MS2A2Net [50] TGRS’2024 34.96 25.30 30.71 30.32 42.30 27.10 36.31 35.24
MGANet [92] TGRS’2024 35.48 22.37 27.75 28.53 38.38 26.63 35.05 33.35

HRL (Ours) – 41.50 27.84 34.51 34.62(+1.91) 49.01 32.86 43.26 41.71(+4.35)

TABLE VIII
CLASS-WISE PERFORMANCE COMPARISON IN MIOU IN 1-SHOT SETTING USING RESNET-50 [82] AS THE BACKBONE. C1-C15 CORRESPOND TO THE 15

CLASSES OF THE ISAID-5i DATASET [51] AND DLRSD-5i DATASET [52]. THE BEST AND SECOND-BEST RESULTS ARE IN BOLD AND UNDERLINED,
RESPECTIVELY.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Mean
iSAID-5i

PANet [11] 21.81 36.31 23.01 42.06 14.59 12.11 17.44 22.70 12.27 21.60 30.29 24.62 26.79 25.54 15.79 23.13
CANet [10] 39.57 18.54 18.46 33.63 17.34 9.78 5.49 22.15 5.17 24.89 9.96 36.50 19.12 38.82 17.85 21.15
SCL [88] 37.61 33.63 26.68 54.75 21.22 22.60 24.40 30.22 6.71 29.93 33.00 44.68 18.25 44.63 15.46 29.58
PEFNet [15] 39.02 45.63 20.86 49.96 23.72 21.00 24.76 31.59 6.98 32.42 13.34 47.64 30.65 32.82 11.54 28.80
NERTNet [89] 33.59 42.83 22.30 49.35 21.91 21.62 28.82 25.64 9.35 34.30 23.91 38.67 25.63 40.84 13.74 28.83
DCPNet [90] 37.42 42.44 35.16 56.55 17.58 21.66 19.57 32.97 10.60 29.50 24.02 35.34 28.44 39.80 17.02 29.87
BAM [14] 36.34 39.76 38.23 58.13 24.71 18.25 12.68 35.91 11.42 30.21 28.98 40.74 29.43 33.25 10.79 29.92
TBPN [91] 25.36 41.28 30.67 32.88 16.48 13.48 9.74 27.88 12.52 20.56 11.12 34.31 23.57 40.36 17.98 23.88
DMML [67] 40.14 40.18 21.31 27.02 13.60 15.56 15.19 26.05 13.84 34.44 11.26 17.57 23.27 39.11 26.12 24.31
SDM [60] 41.77 35.50 21.41 20.81 20.29 15.60 25.60 28.66 13.29 26.79 13.61 32.35 24.59 42.79 25.75 25.92
DML [13] 35.13 42.10 30.49 41.79 15.31 13.25 16.87 24.70 14.62 25.45 10.24 35.49 25.35 41.69 18.57 26.07
R2Net [63] 46.87 49.06 30.70 52.86 26.62 24.31 17.25 31.25 13.67 21.73 24.88 46.07 42.29 42.07 21.08 32.71
MGANet [92] 34.85 45.13 30.41 50.94 16.05 11.99 23.35 33.39 13.65 29.45 13.52 32.19 26.65 44.46 21.90 28.53
HRL (Ours) 43.40 50.69 36.01 56.99 20.54 27.03 29.15 38.88 16.15 28.01 25.23 35.94 38.72 48.51 24.15 34.62

DLRSD-5i

HSNet [21] 23.63 18.39 21.41 8.55 38.02 63.45 24.56 96.49 18.33 33.20 20.88 24.66 57.13 35.00 35.94 34.64
SDM [60] 5.51 22.74 29.00 3.83 39.49 5.30 19.97 84.13 8.94 35.90 11.96 31.99 49.03 38.79 7.57 26.27
SCCNet [86] 23.58 25.32 26.99 10.45 40.37 53.27 25.49 96.29 29.10 40.68 30.09 24.80 60.07 46.72 37.00 37.37
HRL (Ours) 34.91 46.78 56.75 18.27 41.88 64.66 30.72 71.28 26.31 62.60 31.71 27.50 36.79 56.68 44.22 43.40

support sample, the floating point operations (FLOPs) grow
by about 248 G, which puts a higher demand on the compu-
tational resources.

4) Effects of the BHLoss: To further explore the necessity
of the bidirectional hierarchical loss (BHLoss), we decompose

it into two single-directional hierarchical losses (SHLoss) and
conduct experiments separately for validation. The results in
Table VI indicate that when only a SHLoss is applied (i.e.,
the green or purple lines), the information flow is passed in
a single direction toward either the lowest or highest layer,
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Fig. 5. Segmentation prediction of the iSAID-5i dataset [51] in 1-shot setting.

TABLE IX
COMPARISON OF SEGMENTATION RESULTS WITH MIOU AND FB-IOU ON THE DLRSD-5i DATASET [52]. THE RESULTS OF THE COMPARISON METHODS

WITH RESNET-50 [82] AS THE BACKBONE ARE TRANSCRIBED FROM SCCNET [86]. THE BEST AND SECOND-BEST RESULTS ARE IN BOLD AND
UNDERLINED, RESPECTIVELY.

Methods Pub. Years
1-shot 5-shot

Split0 Split1 Split2 Mean Split0 Split1 Split2 Mean

HSNet [21] ICCV’2021 22.00 47.20 34.73 34.64 27.46 52.32 46.23 42.00
SDM [60] TGRS’2022 20.11 30.84 27.87 26.27 26.03 41.74 33.55 33.77

SCCNet [86] AGIS’2023 25.34 48.97 39.73 37.37 30.22 52.40 47.15 43.26
PCFNet [61] TGRS’2023 31.09 37.52 41.89 36.83 36.67 42.70 54.20 44.52
HRL (Ours) – 39.72 51.11 39.38 43.40(+6.03) 41.37 51.90 42.86 45.38(+0.86)

leading to homogeneous relation modeling. Since SHLoss un-
able to simultaneously constrain information extraction across
different levels, it fails to deliver performance improvements.
These findings validate the necessity and effectiveness of
the bidirectional hierarchical loss (BHLoss) in maintaining
hierarchical information balance and promoting diverse rela-
tion modeling. Specifically, after introducing BHLoss into the
HRNet framework, the MIoU increased by 0.64% under the 1-
shot setting and by 0.86% under the 5-shot setting. Compared
with the baseline, BHLoss brings a gain of 2.63% and 4.09%
MIoU in the 1-shot and 5-shot settings, respectively. Fig. 4
illustrates the heat maps for each hierarchy before and after
adding BHLoss. As can be observed, our BHLoss successfully
improves the diversity of hierarchical relations and suppresses
the activation of non-target regions by applying appropriate
supervision signals at different hierarchies.

C. Comparison with State-of-the-arts

We compare the proposed HRL with existing state-of-the-
art few-shot methods and conduct both numerical and visual
analyses on the iSAID-5i [51], DLRSD-5i [52], and LoveDA-
2i [53] datasets. Under comprehensive consideration, the com-
parison methods are from both natural and remote sensing
image domains. In the comparison tables of segmentation
results, we use italics to represent the FSS methods for natural
images.

1) iSAID-5i dataset: We first carry out experimental com-
parison on the iSAID-5i dataset [51]. Table VII lists test
results for state-of-the-art methods with different backbone
and few-shot settings, and Table VIII shows in detail the
segmentation results for each category with ResNet-50 as the
backbone in the 1-shot setting. Our proposed HRL achieves
the best performance for both individual splits and the total
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average in the 5-shot setting, improving by 3.76% mIoU over
the second-ranked PCNet [64] with VGG-16 and by 4.35%
mIoU over the second-ranked R2Net [63] with ResNet-50.
In different few-shot settings, HRL outperforms MS2A2Net
[50], demonstrating that our HRL effectively prevents the ac-
cumulation and transmission of erroneous relations within the
hierarchy. When using ResNet-50 as the backbone network,
HRL slightly lags behind the advanced R2Net [63] only in the
Split2 of the 1-shot setting, while achieving superior results
in all other configurations. According to Table VIII, this gap
primarily arises from C12 (Roundabout). Due to the complex
traffic patterns in “Roundabout” areas (as illustrated in Fig. 2),
these regions, serving as critical nodes in road networks,
exhibit significant heterogeneity in both shape and structure.
They often overlap with certain road segments, resulting in
considerable variance in the hierarchical relation modeling
by HRL for this category, which in turn affects the final
relation aggregation results. Despite the poor performance
on “Roundabout”, the benefits of HRL, particularly in scale-
awareness, should not be overlooked. It is worth noting that
under all comparison settings, HRL consistently outperforms
SDM [60], which alleviates scale variation of remote sensing
objects through multi-prototype representation, as well as
MGANet [92], which adopts a multi-granularity aggregation
strategy. For small-scale objects, HRL surpasses the state-of-
the-art R2Net [63] by 11.90% mIoU on C7 (Small Vehicle)
and 7.63% mIoU on C8 (Large Vehicle), respectively.

Fig. 5 visualizes the segmentation results for some episodes
in the 1-shot setting using ResNet-50. We select several
representative scenarios for detailed analysis. In the second
column, the support image contains only “Large Vehicle”,
while the query image includes both “Small Vehicle” and
“Large Vehicle”. Due to the inability of BAM [14], MGANet
[92], and R2Net [63] to effectively distinguish inter-class rela-
tion differences during the matching process, “Small Vehicle”
are incorrectly segmented. In the third column, the dense
distribution and high intra-class variation of “Small Vehicle”
present challenges for establishing accurate support-query
correspondence. In the fourth column, “Bridge” and the road
share similar construction materials, resulting in ambiguous
boundaries. Moreover, the support image depicts “Bridge”
within a complex urban scene, while the background of the
query image is relatively simple. This significant difference
in background hinders the ability of the model to locate
the corresponding region in the query image. Consequently,
MGANet [92] misclassifies “Bridge” as a road and only
segments scattered parts of it, while BAM [14] and R2Net [63]
also fail to produce complete segmentation results. In the fifth
column, “Plane” exhibits complex boundary structures. Ben-
efiting from the hierarchical relation learning, HRL demon-
strates superior capability in parsing fine details such as wings
and tail components. In the seventh column, “Soccer Ball
Field” exhibits large intra-class variation and lacks clear field
markings in the query image, making it difficult to identify,
even for human observers. As a result, the compared methods
produce incomplete segmentations. In the ninth column, the
narrow “Harbor” is closely connected to the pavilion, and
both MGANet [92] and R2Net [63] incorrectly classify the

Fig. 6. Segmentation prediction of HRL with ResNet-50 [82] on DLRSD-5i
dataset [52] and LoveDA-2i dataset [53] in the 1-shot setting.

pavilion as part of “Harbor”. Despite these tricky scenarios, the
proposed HRL demonstrates strong robustness by effectively
extracting single-scale relations and aggregating multi-scale
support-query relations across different hierarchies, signifi-
cantly improving the stability and accuracy of FSS in RSIs.

2) DLRSD-5i dataset: We proceed by comparing our
method with existing methods on the DLRSD-5i dataset [52].
As listed in Table IX, our HRL obtains the highest average
performance across three splits on DLRSD-5i [52], exceeding
the second-ranked SCCNet [86] by 6.03% mIoU in the 1-
shot setting, and surpassing the second-ranked PCFNet [61] by
0.86% mIoU in the 5-shot setting. More detailed results from
Table VIII reveal that HRL is superior to the existing methods
in 11 out of 15 classes. This highlights the importance and
effectiveness of hierarchical relation learning in FSS for RSIs.
The left side of Fig. 6 visualizes several segmentation results.
The DLRSD-5i dataset contains several challenging scenarios,
such as the high inter-class similarity between “Bare Soil” and
“Sand”, as well as the large intra-class variability of “Build-
ing”. In addition, both “Bare Soil” and “Sand” have ambiguous
boundaries with their surrounding areas, posing a greater
challenge to the robustness of the model. PCFNet [61] and
SCCNet [86] both fail to accurately segment these classes due
to their inability to correctly match the relationships between
the support prototypes and the query images. When handling
classes like “Building”, which have distinct boundaries but
highly variable appearances, both methods misclassify “Court”
as “Building” due to insufficient relation modeling. In con-
trast, HRL employs hierarchical relation extraction and cross-
hierarchical relation aggregation, which effectively enhances
the accuracy and diversity of support-query matching, and thus
achieves better recognition performance.
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TABLE X
COMPARISON OF SEGMENTATION RESULTS WITH MIOU AND FB-IOU ON THE LOVEDA-2i DATASET [53]. THE RESULTS OF THE COMPARISON METHODS

ARE TRANSCRIBED FROM MGANET [92]. THE BEST AND SECOND-BEST RESULTS ARE IN BOLD AND UNDERLINED, RESPECTIVELY.

Backbones Methods Pub. Years
1-shot 5-shot

Split0 Split1 Split2 Mean FB-IoU Split0 Split1 Split2 Mean FB-IoU

VGG-16

SCL [88] CVPR’2021 15.31 21.43 23.89 20.21 29.56 14.84 22.39 20.85 19.36 29.22
PEFNet [15] TPAMI’2020 16.14 24.35 31.57 24.02 34.72 15.08 26.82 30.18 24.03 38.40
ASGNet [93] CVPR’2021 15.93 21.60 29.08 22.20 39.79 17.33 26.24 35.75 26.44 38.41
DCPNet [90] IJCAI’2022 15.22 22.58 31.83 23.21 34.97 15.94 26.38 31.37 24.56 36.24

NTRENet [89] CVPR’2022 15.07 23.17 28.68 22.31 36.18 15.30 25.12 30.95 23.79 35.06
DMNet [66] TGRS’2023 19.71 26.23 30.43 25.46 45.78 25.02 35.51 33.62 31.38 51.70

MGANet [92] TGRS’2024 20.00 27.44 32.63 26.69 43.11 25.09 35.03 36.64 32.25 50.44
HRL (Ours) – 23.76 33.51 34.48 30.58(+5.12) 47.66(+1.88) 24.20 41.84 40.27 35.44(+4.06) 52.26(+0.56)

ResNet-50

SCL [88] CVPR’2021 15.14 20.45 25.00 20.20 24.60 14.25 21.09 23.65 19.66 24.69
PEFNet [15] TPAMI’2020 17.13 22.20 26.49 21.94 33.48 15.83 25.73 24.74 22.10 34.77
ASGNet [93] CVPR’2021 15.91 20.21 22.33 19.48 36.39 18.38 26.29 36.34 27.00 39.59
CyCTR [19] NeurIPS’2021 13.17 23.43 21.99 19.53 38.47 13.81 27.40 26.15 22.45 42.17

DCPNet [90] IJCAI’2022 16.67 23.10 24.44 21.40 36.36 13.43 25.59 28.06 22.36 33.89
NTRENet [89] CVPR’2022 16.05 22.69 21.87 20.20 32.67 15.79 24.94 23.42 21.38 31.79

DMNet [66] TGRS’2023 19.29 25.52 31.53 25.45 43.40 24.62 33.80 33.12 30.51 50.93
MGANet [92] TGRS’2024 20.55 27.51 33.30 27.12 44.91 26.53 35.99 36.69 33.07 50.68

HRL (Ours) – 24.18 34.69 37.78 32.22(+6.77) 49.97(+6.57) 30.76 40.52 41.75 37.68(+7.17) 55.67(+4.74)

TABLE XI
COMPARISON OF SEGMENTATION RESULTS WITH RESNET-50 [82] ON THE

ISAID-5i DATASET [51].

Method MIoU FB-IoU #Para. FLOPs FPS

PANet [11] 26.27 57.37 23.6M 2398.9G 2.7
CANet [10] 26.03 59.46 22.3M 1083.2G 3.1

SCL [88] 34.91 64.13 11.9M 642.1G 8.6
PEFNet [15] 33.59 63.25 10.8M 625.1G 1.3

NTRENet [89] 36.25 64.45 20.8M 641.4G 9.1
DCPNet [90] 34.38 63.77 11.3M 978.1G 6.0

BAM [14] 36.61 65.00 4.9M 696.4G 9.8
SDM [60] 28.27 59.90 29.3M 366.2G 11.8

R2Net [63] 37.36 66.18 5.0M 1358.3G 4.6
MGANet [92] 33.35 62.94 10.1M 1126.4G 1.0

HRL (Ours) 41.71 68.25 10.5M 1461.0G 2.8

3) LoveDA-2i dataset: We continue by comparing our HRL
with state-of-the-art approaches on the LoveDA-2i dataset
[53]. The experimental results are presented in Table X, show-
ing that the proposed HRL performs strongly and competi-
tively. In the 1-shot setting, it exceeds the previous best method
DMNet [66] by 5.12% MIoU with VGG-16 and by 6.77%
MIoU with ResNet-50. In the 5-shot setting, HRL outperforms
DMNet [66] with improvements of 4.06% and 7.17% in MIoU
when using VGG-16 and ResNet-50 as backbone networks,
respectively. Across all experimental settings, HRL achieves
superior performance except for Split0 under the 5-shot setting
with VGG-16, where its MIoU is slightly lower than that
of MGANet [92] by 0.89%. This further demonstrates the
robustness and stability of HRL in few-shot remote sensing
image segmentation tasks. In contrast to the previous two
datasets, LoveDA-2i [53] has a larger scale and unfixed shape
of remote sensing concepts (not limited to a single image, such
as water and agriculture). The segmentation visualization of
the various methods on the LoveDA-2i dataset is shown on
the right side of Fig. 6. Although the “Water” area in the
support image is relatively small and its color is similar to the

surrounding environment in the query image, HRL is still able
to accurately match and identify the target region, demonstrat-
ing its strong relationship modeling capability. In the second
column, due to the diversity of cultivated crops and variations
in uncultivated land, it is difficult to accurately segment the
“Agricultural” area with only a single support image. Both
DMNet [66] and MGANet [92] show fragmented segmentation
results for this class. In contrast, HRL effectively improves the
matching accuracy between support and query images through
cross-hierarchy support-query relation correction and fusion,
yielding segmentation results closer to the ground truth. In
the third column, although the “Barren” in the support image
occupies only a small portion and appears visually similar
to the surrounding “Agricultural”, HRL can still locate the
corresponding region in the query image, further validating its
strong robustness and generalization ability.

4) Comparison of Computing Performance: Table XI
presents a comparison of the number of parameters, com-
putational complexity (FLoating point OPerations, FLOPs),
and inference speed (Frames Per Second, FPS) across several
methods on 5-shot, showing that HRL strikes a good balance
between performance and complexity. Despite being slower in
inference speed than the state-of-the-art R2Net [63], our HRL
is 4.35% MIoU and 2.07% FB-IoU higher in segmentation
accuracy. Compared to PEFNet, HRL has a similar parameter
count but obtains a higher FB-IoU, and faster inference speed,
underscoring its effectiveness. These results suggest that the
proposed correlation learning approach holds promise for
advancing FSS in RSIs.

V. CONCLUSION

In this paper, we propose Hierarchical Relation Learning
(HRL) to enhance FSS for RSIs. Our efforts include both net-
work architecture design (i.e., HRNet) and training strategies
(i.e., BHLoss). HRNet is designed to perform both single-scale
relation extraction at each hierarchy and multi-scale relation
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aggregation across hierarchies, generating enhanced relation
representations for high-quality segmentation of the targets in
the query image. Moreover, BHLoss is proposed to supervise
the learning of single-scale relations, ensuring the diversity of
single-scale relation representations for effective multi-scale
relation aggregation. The proposed HRL achieves state-of-the-
art performance on three popular remote sensing datasets. In
future work, we plan to integrate large segmentation models
into our HRL to develop a more powerful FSS model specif-
ically adapted for RSIs.
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