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DNA: Deeply-supervised Nonlinear Aggregation for
Salient Object Detection

Yun Liu, Ming-Ming Cheng, Xin-Yu Zhang, Guang-Yu Nie, and Meng Wang

Abstract—Recent progress on salient object detection mainly
aims at exploiting how to effectively integrate multi-scale con-
volutional features in convolutional neural networks (CNNs).
Many popular methods impose deep supervision to perform side-
output predictions that are linearly aggregated for final saliency
prediction. In this paper, we theoretically and experimentally
demonstrate that linear aggregation of side-output predictions
is suboptimal, and it only makes limited use of the side-output
information obtained by deep supervision. To solve this problem,
we propose Deeply-supervised Nonlinear Aggregation (DNA) for
better leveraging the complementary information of various side-
outputs. Compared with existing methods, it i) aggregates side-
output features rather than predictions, and ii) adopts nonlinear
instead of linear transformations. Experiments demonstrate that
DNA can successfully break through the bottleneck of current
linear approaches. Specifically, the proposed saliency detector,
a modified U-Net architecture with DNA, performs favorably
against state-of-the-art methods on various datasets and evalua-
tion metrics without bells and whistles.

Index Terms—Salient object detection, saliency detection,
deeply-supervised nonlinear aggregation.

I. INTRODUCTION

SALIENT object detection, also known as saliency detec-
tion, aims at simulating the human vision system to detect

the most conspicuous and eye-attracting objects or regions in
natural images [1], [2], [3]. The progress in saliency detection
has been beneficial to a wide range of vision applications,
including image retrieval [4], [5], visual tracking [6], scene
classification [7], content-aware image/video processing [8],
[9], thumbnail generation [10], video object segmentation
[11], and weakly supervised learning [12], [13]. Although
numerous models have been presented [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23] and significant improvement
has been made, it still remains an open problem to accurately
detect complete salient objects in static images, especially in
complicated scenarios.

Conventional saliency detection methods [2], [27], [28]
usually design hand-crafted low-level features and heuristic
priors, which are difficult to represent semantic objects and
scenes. Recent advances on saliency detection mainly benefit
from convolutional neural networks (CNNs) [29], [30], [31],
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[32], [33]. On the one hand, CNNs naturally learn multi-scale
and multi-level feature representations in each layer due to the
increasingly larger receptive fields and downsampled (strided)
scales [34]. On the other hand, salient object detection requires
multi-scale learning because of the various object/scene scales
in intra- and inter-images [35], [36]. Therefore, current cutting-
edge saliency detectors [15], [37], [38], [39], [17], [40],
[41], [42], [43] mainly aim at designing complex network
architectures to leverage multi-scale CNN features, e.g., the
semantic meaningful information in the top sides and the
complementary spatial details in the bottom sides.

Owing to the superiority of U-Net [25] (or FCN [44])
and HED [26] in multi-scale learning, many leading-edge
saliency detectors add deep supervision onto U-Net networks
[16], [38], [17], [18], [41], [45], [19], [46] (Fig. 1(d)). We
note that these networks first predict multi-scale saliency
maps using side-outputs. The generated multi-scale side-output
predictions are then linearly aggregated, e.g., via a pixel-
wise convolution (i.e., 1 × 1 convolution), to obtain the final
saliency prediction which can thus combine the advantages of
all side-output predictions. However, we theoretically and ex-
perimentally demonstrate that the linear aggregation of side-
output predictions is suboptimal, and it makes limited use of
the complementary multi-scale information implicated in side-
output features. We provide detailed proofs in Section III.

Instead of linearly aggregating side-output predictions, we
propose a nonlinear side-output aggregation method. Specifi-
cally, we concatenate the side-output features rather than side-
output predictions and then apply nonlinear transformations
to predict salient objects. We also impose deep supervision
to side-output features for better optimization in the training
phase, as illustrated in Fig. 1(e). In this way, the concatenated
features can make better use of the multi-scale side-output
features. We call the resulting method Deeply-supervised
Nonlinear Aggregation (DNA). We apply DNA into a simply
redesigned U-Net without bells and whistles. The proposed
network performs favorably against all previous state-of-the-
art salient object detectors with less parameters and faster
speed. Our contributions are twofold:

• We theoretically and experimentally analyze the natural
limitation of traditional linear side-output aggregation
which can only make limited use of multi-scale side-
output information.

• We propose Deeply-supervised Nonlinear Aggregation
(DNA) for side-output features, whose effectiveness has
been proved by introducing it into a simple network with
less parameters and faster speed.
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Fig. 1. Illustration of different multi-scale deep learning architectures. Note that (c)-(e) use deep supervision to produce side-outputs, but (c) and (d) linearly
aggregate side-output predictions, while the proposed DNA (e) adopts nonlinear aggregation onto side-output features.

II. RELATED WORK

Salient object detection is a very active research field due to
its wide range of applications and challenging scenarios. Early
heuristic saliency detection methods extract hand-crafted low-
level features and apply machine learning models to classify
these features [47], [48], [49]. Some heuristic saliency priors
are utilized to ensure the accuracy, such as color contrast
[1], [2], center prior [50], [27] and background prior [51],
[52]. With vast successes achieved by deep CNNs in computer
vision, CNN-based methods have been introduced to improve
saliency detection [53], [54], [55], [56], [57]. Region-based
saliency detection [58], [59], [60], [61], [62], [20], [21]
appeared in the early era of deep learning based saliency.
These approaches view each image patch as a basic processing
unit to perform saliency detection. More recently, CNN-based
image-to-image saliency detection [15], [16], [37], [38], [39],
[17], [40], [18], [41], [63], [42], [64], [65], [43], [66], [67],
[45], [22], [23] has dominated this field by viewing saliency
detection as a pixel-wise regression task and performing
image-to-image predictions. Hence we mainly review CNN-
based image-to-image saliency detection in the following.

Since saliency detection requires both high-level global
information (existing in the top sides of CNNs) and low-level
local details (existing in the bottom sides of CNNs), how to
effectively fuse multi-level deep features is the main research
direction [15], [37], [38], [39], [17], [40], [41], [42], [43], [66],
[67], [45], [68], [69]. There are too many studies to list here,
but the general trend of recent network designs is to become
more and more complicated. We continue our discussion by
briefly categorizing multi-scale deep learning into four classes:
hyper feature learning, U-Net style, HED style, and U-Net +
HED style. An overall illustration of them is shown in Fig. 1.

Hyper feature learning: Hyper feature learning [24], [70],
[71] is the most intuitive way to learn multi-scale information,
as illustrated in Fig. 1(a). Examples of this structure for
saliency include [66], [37], [63], [42], [64], [72], [65], [73].
These models concatenate/sum multi-scale deep features from
multiple layers of backbone nets [66], [37] or branches of the
multi-stream nets [63], [42], [64]. The fused hyper features,
called hypercolumn, are then used for final predictions.

U-Net style: It is widely accepted that the top layers of
deep neural networks contain high-level semantic information,
while the bottom layers learn low-level fine details. Therefore,

a reasonable revision of hyper feature learning is to progres-
sively fuse deep features from upper layers to lower layers
[44], [25], as shown in Fig. 1(b). The top semantic features
will combine with bottom low-level features to capture fine-
grained details. The feature fusion can be a simple element-
wise summation [44], a simple feature map concatenation (U-
Net) [25], or complex designs based on them. Many saliency
detectors are of this type [74], [75], [67], [76], [40], [39], [14],
[77], [78]. Note that hyper feature learning and U-Net do not
apply deep supervision, so they do not have side-outputs.

HED style: HED-like networks [26], [79], [80] were first
presented for edge detection. Afterwards, similar ideas have
been also introduced for saliency detection [15], [43]. HED-
like networks add deep supervision at the intermediate sides to
obtain side-output predictions, and the final result is a linear
combination of all side-output predictions (shown in Fig. 1(c)).
Unlike multi-scale feature fusion, HED performs multi-scale
prediction fusion.

U-Net + HED style: These methods combine the advantages
of both U-Net and HED. We outline this architectures in
Fig. 1(d). Specifically, deep supervision is imposed at each of
the convolution stage of U-Net decoder. Many recent saliency
models fall into this category [16], [38], [17], [18], [41],
[81], [45], [19], [82], [83], [84], [85], [23], [46]. They differ
from each other by applying different fusion strategies. One
notable similarity of these models is that the final prediction
is produced by a linear aggregation of side-output predictions.
Hence the multi-scale learning is achieved in two aspects: i)
the U-Net aggregates multi-level convolutional features from
top layers to bottom layers in an encoder-decoder form; ii)
the multi-scale side-output predictions are further linearly
aggregated for final prediction. Current research in this
field mainly focuses on the first aspect, and top-performing
models have designed very complex feature fusion strategies
for this [17], [41].

A full literature review of salient object detection is beyond
the scope of this paper. Please refer to [86], [87], [88] for
more comprehensive surveys. In this paper, we focus on the
second aspect of above U-Net + HED multi-scale learning:
the multi-scale side-output aggregation. We find that the upper
bound of traditional linear side-output prediction aggregation
is limited to the side-output predictions. Hence we propose
DNA to aggregate side-output features in the nonlinear way,
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so that the aggregated hybrid features can make good use of
the complementary multi-scale deep features. A streamlined
diagram of our proposed DNA can be seen in Fig. 1(e). We
demonstrate DNA can achieve superior performance with a
very simple U-Net.

III. REVISITING LINEAR SIDE-OUTPUT AGGREGATION

Deep supervision and corresponding linear side-output pre-
diction aggregation have been demonstrated to be effective in
many vision tasks [26], [79], [17], [41]. This section analyzes
the natural limitation of the linear side-output aggregation
from both theoretical and experimental perspectives. To the
best of our knowledge, this is a novel contribution.

Suppose a deeply-supervised network has N side-output
prediction maps {O1,O2, · · · ,ON}, all of which are super-
vised by ground-truth maps (Fig. 1(c)(d)). Without loss of
generality, we assume the linear side-output aggregation is a
pixel-wise convolution, i.e., 1× 1 convolution. Hence, current
linear side-output aggregation can be written as

Ô =

N∑
i=1

wi · Oi, (1)

where weights wi of pixel-wise convolution can be learned.
Note that we have wi ≥ 0 here. Otherwise, Oi would
have negative effect to Ô, so it should be excluded in the
aggregation. To obtain the output saliency probability map, a
standard sigmoid function σ(x) = 1

1+e−x should be applied
to Ô. The aggregated probability map becomes

P̂ = σ(Ô) = σ(

N∑
i=1

wi · Oi). (2)

Similarly, we can compute side-output probability maps
{P1,P2, · · · ,PN}.

Theorem 1. If ‖w‖1 = 1, the mean absolute error (MAE) of
fused output P̂ is limited by side-output predictions.

Proof. If ‖w‖1 = 1, it is natural to show

min(Oi) ≤
N∑
i=1

wi · Oi ≤ max(Oi), (3)

because wi ≥ 0 as discussed above. Since the sigmoid
function σ(x) is monotonically increasing, we have

min(Pi) ≤ P̂ ≤ max(Pi). (4)

If a pixel p is positive, we have MAE(P̂)p = |1 − P̂(p)| =
1 − P̂(p) and 1 − max(Pi)p ≤ 1 − P̂(p) ≤ 1 − min(Pi)p,
so that min(MAE(Pi)p) ≤ MAE(P̂)p ≤ max(MAE(Pi)p)
holds. If the pixel p is negative, we have MAE(P̂)p =

|0 − P̂(p)| = P̂(p) and min(Pi)p ≤ P̂(p) ≤ max(Pi)p,
so that min(MAE(Pi)p) ≤ MAE(P̂)p ≤ max(MAE(Pi)p)
holds. Note that w usually only has N (N ≤ 6 in VGG16 [89]
and ResNet [90]) dimensions, so it is also difficult to make
aforementioned left equality hold. Hence traditional linear
aggregation is limited in terms of MAE metric. However, what
we expect is to break through the limitation by making full
use of multi-scale information.

TN
TP

FN
FP

Fig. 2. Probability (x axis) vs. the density of X′ and Y ′ (y axis). TN: true
negative; FN: false negative; TP: true positive; FP: false positive.

Lemma 1. If ‖w‖1 6= 1, traditional linear aggregation (as
in Eq. (1) and Eq. (2)) is equivalent to first applying an ag-
gregation with ‖w̃‖1 = 1 and then applying a monotonically
increasing mapping.

Proof. If ‖w‖1 6= 1, we set w = w̃ · ‖w‖1, so we have
‖w̃‖1 = 1 . The computation of P̂ becomes

P̂ = σ(‖w‖1 ·
N∑
i=1

w̃i · Oi), (5)

in which σ(‖w‖1 · x) (‖w‖1 > 0) is a monotonically
increasing function in terms of x.

Theorem 2. The monotonically increasing mapping of
σ(‖w‖1 · x) (‖w‖1 > 0) cannot change the ROC curve and
AUC metric1.

Proof. Suppose the predicted scores of positive samples obey
the distribution of X ∼ F (x), while the predicted scores of
negative samples obey the distribution of Y ∼ G(x). We may
assume F and G are continuous functions. ϕ(x) = σ(k · x)
(k > 0) is a variant of sigmoid function, so we have ϕ :
R→ (0, 1) and ϕ is a monotonically increasing function. Let
X ′ = ϕ(X) and Y ′ = ϕ(Y ) be two transformed distributions.
It is easy to show

P(X ′ ≤ u) = P(ϕ(X) ≤ u) = P(X ≤ ϕ−1(u))
= F (ϕ−1(u)),

(6)

and thus we can obtain X ′ ∼ F (ϕ−1(x)) and Y ′ ∼
G(ϕ−1(x)).

Let t be a threshold, true positive rate (TPR) and false
positive rate (FPR) can be computed as

TPR =
TP

TP + FN
= P(X ′ > t) = 1− F (ϕ−1(t)),

FPR =
FP

FP + TN
= P(Y ′ > t) = 1−G(ϕ−1(t)),

(7)

as shown in Fig. 2. Hence we can denote the ROC curve
as {(1 − F (ϕ−1(t)), 1 − G(ϕ−1(t))) : t ∈ (0, 1)}. It
is easy to show that as t goes from 0 to 1 continu-
ously, (1 − F (ϕ−1(t)), 1 − G(ϕ−1(t))) will change from
(1, 1) to (0, 0) continuously and monotonically. It is also

1AUC is the area under the ROC Curve.
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TABLE I
COMPARISON BETWEEN LINEAR SIDE-OUTPUT PREDICTION AGGREGATION (i.e., LIN) AND NONLINEAR SIDE-OUTPUT FEATURE AGGREGATION (i.e.,

NONLIN). THE DATASETS AND METRICS WILL BE INTRODUCED IN SECTION V-A. THE LINEAR AGGREGATION OF HED [26] AND DSS [43] FOLLOWS
THE ORIGINAL PAPERS, AND THEIR NONLINEAR AGGREGATION REPLACES LINEAR AGGREGATION WITH THE PROPOSED DNA.

Methods Fusion DUTS-TE ECSSD HKU-IS DUT-O THUR15K
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

HED [26] linear 0.796 0.079 0.892 0.065 0.893 0.052 0.726 0.100 0.757 0.099
nonlinear 0.827 0.057 0.911 0.053 0.912 0.039 0.752 0.078 0.775 0.083

DSS [43] linear 0.827 0.056 0.915 0.056 0.913 0.041 0.774 0.066 0.770 0.074
nonlinear 0.833 0.055 0.918 0.056 0.916 0.040 0.784 0.060 0.773 0.072

DNA linear 0.844 0.048 0.921 0.050 0.917 0.034 0.765 0.066 0.785 0.071
nonlinear 0.865 0.044 0.935 0.041 0.930 0.031 0.799 0.056 0.793 0.069

obvious to see that {(1 − F (ϕ−1(t)), 1 − G(ϕ−1(t)))}
and {(F (ϕ−1(t)), G(ϕ−1(t)))} are symmetric about the
point ( 12 ,

1
2 ). Suppose the area under the curve {(1 −

F (ϕ−1(t)), 1 − G(ϕ−1(t)))} is S1, and the area under the
curve {(F (ϕ−1(t)), G(ϕ−1(t)))} is S2. By symmetry, we
have S1 + S2 = 1.

With the above conclusions, we can compute S2 as

S2 =

∫ 1

0

G(ϕ−1(t))dF (ϕ−1(t))

=

∫ +∞

−∞
G(x)dF (x).

(8)

Therefore, S2 is independent of the specific form of the
function ϕ(x), and S1 = 1− S2 is independent of ϕ(x), too.
Moreover, as t ranges in (0, 1), thus ϕ−1(t) ranges in R. We
have

{(1− F (ϕ−1(t)), 1−G(ϕ−1(t))) : t ∈ (0, 1)}
= {(1− F (x), 1−G(x)) : x ∈ R},

(9)

which is also independent of the form of ϕ(x). When F (x) and
G(x) are discrete, the set {(1− F (ϕ−1(t)), 1−G(ϕ−1(t))) :
t ∈ (0, 1)} is discrete but still independent of ϕ(x). Therefore,
we can conclude that ϕ(x) cannot change the ROC curve and
AUC metric.

Similar to the proof for Theorem 1, we can easily demon-
strate that the first step in Lemma 1, i.e., linear aggregation
with ‖w̃‖1 = 1, has limited MAE results. From Theorem 2,
we know the second step in Lemma 1, i.e., a monotonically
increasing mapping, cannot change the ROC curve and AUC
value. Therefore, we can conclude that traditional linear ag-
gregation with ‖w‖1 6= 1 has limited improvement. Combined
with Theorem 1, we can conclude that linear aggregation of
side-outputs only has limited improvement.

Besides the theoretical proofs, we also perform experiments
to compare linear aggregation versus nonlinear aggregation
for salient object detection. To this end, we use the proposed
nonlinear side-output feature aggregation (in Section IV-B) for
nonlinear regression to evaluate two well-known models: HED
[26] and DSS [43], and the proposed DNA model. The results
are summarized in Table I. We can see significant improvement
from linear regression to nonlinear regression. Based on this
observation, this paper aims at designing a simple network
with nonlinear side-output aggregation for effective salient
object detection.
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Fig. 3. Network architecture. We only illustrate the first four network sides
in this figure, and the other two can be constructed in the same way. The
proposed DNA module is in the dotted box. The parameters Ki × Ki and
Ci are introduced in the text.

IV. METHODOLOGY

In this section, we will elaborate our proposed framework
for salient object detection. We first introduce our base net-
work in Section IV-A. Then, we present the deeply-supervised
nonlinear aggregation in Section IV-B. An overall network
architecture is illustrated in Fig. 3.

A. Base Network

Backbone network. To tackle the salient object detection, we
follow recent studies [63], [42], [43] to use fully convolu-
tional networks. Specifically, we use the well-known VGG16
network [89] as our backbone network, whose final fully
connected layers are removed to serve for image-to-image
translation. Salient object detection usually requires global
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TABLE II
NETWORK CONFIGURATIONS.

Side Ci Ki ×Ki Resolution
Side-output 1 64 3× 3 1
Side-output 2 128 3× 3 1/2
Side-output 3 128 5× 5 1/4
Side-output 4 128 5× 5 1/8
Side-output 5 128 5× 5 1/16
Side output 6 - - 1/32

information to locate the coarse positions of salient objects
[2], so enlarging the receptive field of the network would be
helpful. To this end, we keep the final pooling layer of VGG16
as in [43] and replace the last two fully connected layers with
two convolution layers, one of which has the kernel size of
3 × 3 with C

(1)
6 = 192 channels and another of which has

the kernel size of 7× 7 with C(2)
6 = 128 channels. Here, we

use the 3×3 convolution layer to reduce the feature channels,
because large kernel sizes (e.g., 7 × 7) lead to much more
parameters.

There are five pooling layers in the backbone network.
They divide the convolution layers into six convolution blocks,
which are denoted as {S1,S2,S3,S4,S5,S6} from bottom to
top, respectively. We consider S6 as the top valve that controls
the overall contextual information that flows in the network.
The resolution of the feature maps in each convolution block
is half of the preceding one. Following [43], [26], the side-
output of each convolution block is connected from the last
layer of this block.

Encoder-decoder network. Based on the backbone net, we
build an encoder-decoder network that can be seen in Fig. 3.
Concretely, we connect a 1 × 1 convolution layer to each
of the convolution blocks S6 and S5 to adjust the number
of channels (as shown in Table II). Then, we upsample the
obtained feature maps from S6 by two. The upsampled feature
maps and resulting feature maps from S5 are concatenated. To
fuse the concatenated feature maps, two sequential convolution
layers are used to generate the decoder side S̃5. The decoder
sides {S̃4, S̃3, S̃2, S̃1} can be obtained in the same manner.
For a clear presentation, we formulate the above process as
follows

S̃i = ϕ(Concat(φ1(Si), φ2(S̃i+1))),

φ1(·) = Conv(·),
φ2(·) = Upsample(Conv(·)),
ϕ(·) = ReLU(Conv(·)),
∀i ∈ {1, 2, 3, 4, 5}.

(10)

Note that we have S̃6 = S6, because S6 is the last block in
the encoder path and also the first block in the decoder path.
In this way, the proposed encoder-decoder lets top contextual
information flow into the lower layers, so the lower layers
are expected to emphasize the details of salient objects in an
image. Here, both two sequential convolution layers (ϕ(·)) at
the decoder side S̃i are with kernel size of Ki×Ki and output
channels of Ci. We will discuss the parameter settings in detail
in the experiment part.

B. Deeply-supervised Nonlinear Aggregation

Instead of linearly aggregating side-output predictions at
multiple sides as in previous literature [16], [38], [17], [18],
[41], [45], [19], we propose to aggregate the side-output
features in a nonlinear way. The proposed DNA module
is displayed in the dotted box of Fig. 3. Specifically, we
first adopt a 3 × 3 convolution for each S̃i to adjust the
number of channels. Then, the feature maps are upsampled
into the same size of the original image to generate side-
output features. The side-output features can predict saliency
maps using a simple 1× 1 convolution. In the training phase,
deep supervision is added for these predicted maps.

We concatenate all side-output features to construct hybrid
features that contain rich multi-scale and multi-level informa-
tion. One of the key ideas in our nonlinear aggregation is that
we use asymmetric convolution that decomposes a standard
two-dimensional convolution into two one-dimensional con-
volutions. That is to say, a n× n convolution is decomposed
into two sequential convolutions with kernel sizes of 1×n and
n× 1. Here, the reasons why we use asymmetric convolution
are twofold. On one hand, in the experiments, we find large
kernel size in the DNA module can improve performance,
and we believe it is because hybrid feature maps have large
resolution, i.e., the same resolution as the original image.
On the other hand, convolutions with large kernel sizes are
very time-consuming for large feature maps. According to the
above analyses, we set n = 7 for asymmetric convolutions
rather than small kernel sizes. Larger kennel sizes than n = 7
will only lead to little accuracy improvement while causing
more computational load. The effectiveness of this choice
has been validated in Section V-C where we try different
settings of n and asymmetric/standard convolutions. We use
two groups of asymmetric convolutions, each of which consists
of a 1 × 7 and a 7 × 1 convolution. With a 300 × 300
input image, the number of FLOPs (multiply-adds) for these
asymmetric convolutions is 13.8G, while the number of FLOPs
will be 60.4G if we use the standard two-dimensional 7 × 7
convolutions. At last, we connect a 1×1 convolution after the
asymmetric convolutions to predict the final saliency maps.

In training, we adopt class-balanced cross-entropy loss [26]
to supervise all side-output and final fused predictions. Since
convolutions in the DNA module are followed by nonlinear
activation (i.e., ReLU), the aggregation of side-output features
is nonlinear. Although there are several nonlinear functions
that can be used, such as ReLU, PReLU, and LeakyReLU, in
this paper, we simply use the most common ReLU function
to demonstrate the necessity of nonlinear side-output aggrega-
tion. The traditional linear side-output prediction aggregation
can only linearly combine multi-scale predictions, while the
proposed nonlinear side-output feature aggregation can make
use of the complementary multi-scale features for final pre-
diction and is thus more effective. With the simple encoder-
decoder in Section IV-A, DNA performs favorably against
previous methods. Note that previous methods [16], [38], [17],
[18] usually present various network architectures, modules,
and operations to improve performance, but in this paper, DNA
only applies a simply-modified U-Net as base network.
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TABLE III
COMPARISON BETWEEN THE PROPOSED DNA AND 16 COMPETITORS IN TERMS OF THE METRICS OF Fβ AND MAE ON SIX DATASETS. WE REPORT

RESULTS ON BOTH VGG16 [89] BACKBONE AND RESNET-50 [90] BACKBONE. THE TOP THREE MODELS IN EACH COLUMN ARE HIGHLIGHTED IN RED,
GREEN AND BLUE, RESPECTIVELY. FOR RESNET-50 BASED METHODS, WE ONLY HIGHLIGHT THE TOP PERFORMANCE.

Methods DUTS-TE ECSSD HKU-IS DUT-O SOD THUR15K
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Non-deep learning
DRFI [27] 0.649 0.154 0.777 0.161 0.774 0.146 0.652 0.138 0.704 0.217 0.670 0.150

VGG16 [89] backbone
MDF [60] 0.707 0.114 0.807 0.138 - - 0.680 0.115 0.764 0.182 0.669 0.128
LEGS [59] 0.652 0.137 0.830 0.118 0.766 0.119 0.668 0.134 0.733 0.194 0.663 0.126
DCL [66] 0.785 0.082 0.895 0.080 0.892 0.063 0.733 0.095 0.831 0.131 0.747 0.096
DHS [45] 0.807 0.066 0.903 0.062 0.889 0.053 - - 0.822 0.128 0.752 0.082
ELD [61] 0.727 0.092 0.866 0.081 0.837 0.074 0.700 0.092 0.758 0.154 0.726 0.095

RFCN [74] 0.782 0.089 0.896 0.097 0.892 0.080 0.738 0.095 0.802 0.161 0.754 0.100
NLDF [67] 0.806 0.065 0.902 0.066 0.902 0.048 0.753 0.080 0.837 0.123 0.762 0.080
DSS [43] 0.827 0.056 0.915 0.056 0.913 0.041 0.774 0.066 0.842 0.122 0.770 0.074

Amulet [41] 0.778 0.085 0.913 0.061 0.897 0.051 0.743 0.098 0.795 0.144 0.755 0.094
UCF [75] 0.772 0.112 0.901 0.071 0.888 0.062 0.730 0.120 0.805 0.148 0.758 0.112
PiCA [17] 0.837 0.054 0.923 0.049 0.916 0.042 0.766 0.068 0.836 0.102 0.783 0.083
C2S [14] 0.811 0.062 0.907 0.057 0.898 0.046 0.759 0.072 0.819 0.122 0.775 0.083
RAS [15] 0.831 0.059 0.916 0.058 0.913 0.045 0.785 0.063 0.847 0.123 0.772 0.075

DNA 0.865 0.044 0.935 0.041 0.930 0.031 0.799 0.056 0.853 0.107 0.793 0.069
ResNet-50 [90] backbone

SRM [42] 0.826 0.059 0.914 0.056 0.906 0.046 0.769 0.069 0.840 0.126 0.778 0.077
BRN [40] 0.827 0.050 0.919 0.043 0.910 0.036 0.774 0.062 0.843 0.103 0.769 0.076
PiCA [17] 0.853 0.050 0.929 0.049 0.917 0.043 0.789 0.065 0.852 0.103 0.788 0.081

DNA 0.873 0.040 0.938 0.040 0.934 0.029 0.805 0.056 0.855 0.110 0.796 0.068

V. EXPERIMENTS

A. Experimental Setup

Implementation details. The detailed configurations for Ki

and Ci can be found in Table II. The large kernel size at top
sides is helpful to accuracy. When i = 1, 2, Ki×Ki equals to
3×3; When i = 3, 4, 5, Ki×Ki equals to 5×5. The Ci values
for i = 1, · · · , 5 are 64, 128, 128, 128 and 128, respectively.
Since side-output prediction results have not been used, we
remove these side-output prediction units in the test phase.
However, we remain them in the training phase, because deep
supervision can help the training and improve the accuracy of
the final saliency prediction, as demonstrated in Section V-C.

We implement our network using the well-known Caffe [91]
framework. The convolution layers in the original VGG16
[89] are initialized using the pretrained ImageNet model [92].
The weights of other layers are initialized from the zero-mean
Gaussian distribution with standard deviation 0.01. Biases are
initialized to 0. The upsampling operations are implemented
by deconvolution layers with frozen bilinear interpolation
kernels. Since the deconvolution layers do not need training,
we exclude them when computing the number of parameters.
The network is optimized using SGD with learning rate policy
of poly, in which the current learning rate equals the base
one multiplying (1 − curr iter/max iter)power. The hyper
parameters power and max iter are set to 0.9 and 20000,
respectively, so that the training takes 20000 iterations in total.
The initial learning rate is set to 1e-7 that is the maximum
value to keep the network from training exploding (i.e., larger
values will cause the well-known “Nan” error). We follow
previous saliency detection methods [43], [16], [17], [15], [45],
[61], [40], [53], [54], [59], [62], [64], [63], [66], [72], [84] to
set the momentum and weight decay to the typical values of

0.9 and 0.0005 [93], [89], respectively. All experiments are
performed on a TITAN Xp GPU.

Datasets. We extensively evaluate our method on six popular
datasets, including DUTS [94], ECSSD [95], SOD [96], HKU-
IS [60], THUR15K [97] and DUT-O (or DUT-OMRON) [51].
These six datasets consist of 15572, 1000, 300, 4447, 6232 and
5168 natural complex images with corresponding pixel-wise
ground truth labeling. Among them, the DUTS dataset [94]
is a very recent dataset consisting of 10553 training images
and 5019 test images in very complex scenarios. For a fair
comparison, we follow recent studies [40], [17], [42], [37] to
use DUTS training set for training and test on the DUTS test
set (DUTS-TE) and other datasets.

Evaluation criteria. We utilize three evaluation metrics to
evaluate our method as well as other recent salient object
detectors, including max F-measure score (Fβ), mean absolute
error (MAE), and the weighted Fωβ -measure score [98].

Given a predicted saliency map with continuous probability
values, we can convert it into binary maps with arbitrary
thresholds and computing corresponding precision/recall val-
ues. Taking the average of precision/recall values over all
images in a dataset, we can get many mean precision/recall
pairs. F-measure is an overall performance indicator:

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
, (11)

in which β2 is usually set to 0.3 to emphasize more on
precision. We follow recent studies [67], [43], [41], [75], [17],
[14], [15] to report max Fβ across different thresholds.

Given a saliency map S and the corresponding ground truth
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TABLE IV
COMPARISON BETWEEN THE PROPOSED DNA AND 16 COMPETITORS IN TERMS OF Fωβ -MEASURE [98] ON SIX DATASETS. THE UNIT OF THE NUMBER OF

PARAMETERS (#PARAM) IS MILLION (M), AND THE UNIT OF SPEED IS FRAME PER SECOND (FPS). WE REPORT RESULTS ON BOTH VGG16 [89]
BACKBONE AND RESNET-50 [90] BACKBONE. THE TOP THREE MODELS IN EACH COLUMN ARE HIGHLIGHTED IN RED, GREEN AND BLUE,

RESPECTIVELY. FOR RESNET-50 BASED METHODS, WE ONLY HIGHLIGHT THE TOP PERFORMANCE.

Methods #Param Speed DUTS-TE ECSSD HKU-IS DUT-O SOD THUR15K
Non-deep learning

DRFI [27] - 1/8 0.378 0.548 0.504 0.424 0.450 0.444
VGG16 [89] backbone

MDF [60] 56.86 1/19 0.507 0.619 - 0.494 0.528 0.508
LEGS [59] 18.40 0.6 0.510 0.692 0.616 0.523 0.550 0.538
DCL [66] 66.24 1.4 0.632 0.782 0.770 0.584 0.669 0.624
DHS [45] 94.04 10.0 0.705 0.837 0.816 - 0.685 0.666
ELD [61] 43.09 1.0 0.607 0.783 0.743 0.593 0.634 0.621

RFCN [74] 134.69 0.4 0.586 0.725 0.707 0.562 0.591 0.592
NLDF [67] 35.49 18.5 0.710 0.835 0.838 0.634 0.708 0.676
DSS [43] 62.23 7.0 0.700 0.832 0.821 0.643 0.698 0.662

Amulet [41] 33.15 9.7 0.657 0.839 0.817 0.626 0.674 0.650
UCF [75] 23.98 12.0 0.595 0.805 0.779 0.574 0.673 0.613
PiCA [17] 32.85 5.6 0.745 0.862 0.847 0.691 0.721 0.688
C2S [14] 137.03 16.7 0.717 0.849 0.835 0.663 0.700 0.685
RAS [15] 20.13 20.4 0.739 0.855 0.850 0.695 0.718 0.691

DNA 20.06 25.0 0.797 0.897 0.889 0.729 0.755 0.723
ResNet-50 [90] backbone

SRM [42] 43.74 12.3 0.721 0.849 0.835 0.658 0.670 0.684
BRN [40] 126.35 3.6 0.774 0.887 0.876 0.709 0.738 0.712
PiCA [17] 37.02 4.4 0.754 0.863 0.841 0.695 0.722 0.690

DNA 29.31 12.8 0.810 0.901 0.898 0.735 0.755 0.730

G that are normalized to [0, 1], MAE can be calculated as

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|S(i, j)−G(i, j)|, (12)

where H and W are height and width, respectively. S(i, j)
denotes the saliency score at location (i, j), similar to G(i, j).

As demonstrated in [98], traditional evaluation metrics
easily suffer from the interpolation flaw, dependency flaw, and
equal-importance flaw. Hence the weighted Fωβ -measure score
is proposed to amend these flaws. We follow [47], [76], [48],
[17] to adopt Fωβ -measure as a metric with the default settings.

B. Performance Comparison

We compare our proposed salient object detector with 16
recent competitive saliency models, including DRFI [27],
MDF [60], LEGS [59], DCL [66], DHS [45], ELD [61],
RFCN [74], NLDF [67], DSS [43], SRM [42], Amulet [41],
UCF [75], BRN [40], PiCA [17], C2S [14] and RAS [15].
Among them, DRFI [27] is the best-known non-deep-learning
based method, and the other 15 models are all based on deep
learning. We do not report MDF [60] results on the HKU-IS
[60] dataset because MDF uses a part of HKU-IS for training.
Due to the same reason, we do not report DHS [45] results on
the DUT-O [51] dataset. Since SRM [42] and BRN [40] are
built based on the ResNet-50 [90] backbone, we also report
the results of the ResNet-50 version of the proposed DNA and
PiCA [17] for a fair comparison. All previous methods are
tested using their publicly available code and the pretrained
models released by the authors with default settings.

F-measure and MAE. Table III summarizes the numeric
comparison in terms of F-measure (Fβ) and MAE on six
datasets. DNA can significantly outperform other competitors

in most cases, which demonstrates its effectiveness. With
VGG16 [89] backbone, the Fβ values of DNA are 2.8%,
1.2%, 1.4%, 1.4%, 0.6% and 1.0% higher than the second best
method on the DUTS-TE, ECSSD, HKU-IS, DUT-O, SOD
and THUR15K datasets, respectively. As can be seen, DNA
also achieves the best performance in terms of MAE metric
except on the SOD dataset where DNA performs slightly
worse than PiCA [17]. Overall, PiCA [17] seems to achieves
the second place. With the ResNet-50 backbone, DNA still
performs better than previous competitors, indicating DNA
is robust to different network architectures. Therefore, we
suggest the future salient object detectors using nonlinear side-
output aggregation instead of the traditional linear aggregation.

Weighted Fωβ -measure. The weighted Fωβ -measure is also a
commonly-used saliency evaluation metric. In Table IV, we
evaluate DNA and above-mentioned competitors using the Fωβ -
measure. The VGG16 version of DNA achieves 5.2%, 3.5%,
3.9%, 3.4%, 3.4% and 3.2% higher Fωβ -measure than the
second best performance on the DUTS-TE, ECSSD, HKU-
IS, DUT-O, SOD and THUR15K datasets, respectively. For
ResNet-50 version, DNA achieves 3.6%, 1.4%, 2.2%, 2.6%,
1.7% and 1.8% better Fωβ -measure than previous competitors.
Note that the network of DNA is very simple, making it easy
to be followed and applied to other vision tasks.

Number of parameters and runtime. As shown in Table IV,
DNA has fewer parameters, i.e., about 20M parameters with
VGG16 backbone and 29M parameters with ResNet-50 back-
bone. DNA also runs faster than other methods, achieving
25fps with VGG16 and 12.8fps with ResNet-50.

Qualitative comparison. To visually exhibit the superiority
of the proposed DNA over previous methods, we select some
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Simple Scenes | Center Bias

Thin Objects | Thin Object Parts | Large Objects

Low Contrast | Complex Scenes | Complex Textures

Large Objects | Confusing Background

Multiple Objects | Complex Scenes

Complex Scenes | Complex Textures | Multiple Objects

Confusing Background | Low Contrast

Abnormal Brightness | Large Objects

Image RFCN DSS SRM Amulet UCF BRN PiCA C2S RAS Ours GT

Fig. 4. Qualitative comparison between DNA and recent competitive methods. Here, GT represents ground-truth saliency maps.
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TABLE V
ABLATION STUDIES. U-NET MEANS THE STANDARD U-NET [25] WITH VGG16 BACKBONE. IF REMOVING THE DNA MODULE AND DEEP SUPERVISION,
THE PROPOSED NETWORK IN FIG. 3 BECOMES AN ENCODER-DECODER NETWORK THAT IS CALLED Encoder-Decoder. Encoder-Decoder w/ K3 REPLACES

ALL THE CONVOLUTIONS AT THE TOP SIDES OF ENCODER-DECODER WITH 3× 3 CONVOLUTIONS. Encoder-Decoder w/ lin MEANS WE REPLACE THE
DNA MODULE IN FIG. 3 WITH TRADITIONAL LINEAR AGGREGATION IN [26].

Methods DUTS-TE ECSSD HKU-IS DUT-O SOD THUR15K
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

U-Net 0.793 0.080 0.890 0.065 0.894 0.051 0.723 0.101 0.811 0.115 0.758 0.099
Encoder-Decoder w/ K3 0.766 0.101 0.869 0.081 0.876 0.064 0.687 0.129 0.778 0.131 0.736 0.112

Encoder-Decoder 0.831 0.053 0.911 0.052 0.916 0.037 0.754 0.073 0.830 0.117 0.780 0.077
Encoder-Decoder w/ lin 0.844 0.048 0.921 0.050 0.917 0.034 0.765 0.066 0.839 0.120 0.785 0.071

DNA w/o Deep Supervision 0.867 0.042 0.932 0.041 0.927 0.032 0.788 0.059 0.860 0.103 0.794 0.068
DNA 0.865 0.044 0.935 0.041 0.930 0.031 0.799 0.056 0.853 0.107 0.793 0.069

TABLE VI
ABLATION STUDIES FOR VARIOUS PARAMETER SETTINGS. THE UNIT OF THE NUMBER OF PARAMETERS (#PARAM) IS MILLION (M), AND THE UNIT OF

SPEED IS FRAME PER SECOND (FPS).

Methods #Param Speed DUTS-TE ECSSD HKU-IS DUT-O SOD THUR15K
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

#1 18.49 27.0 0.859 0.044 0.932 0.041 0.928 0.031 0.796 0.057 0.855 0.105 0.790 0.069
#2 20.06 25.0 0.865 0.044 0.935 0.041 0.930 0.031 0.799 0.056 0.853 0.107 0.793 0.069
#3 27.88 22.7 0.866 0.043 0.936 0.041 0.930 0.031 0.799 0.056 0.861 0.106 0.792 0.069
#4 41.41 18.2 0.864 0.044 0.935 0.041 0.931 0.030 0.800 0.056 0.857 0.105 0.792 0.069

TABLE VII
PARAMETER SETTINGS FOR ABLATION STUDIES IN TABLE VI. THE

DEFAULT SETTING IN THIS PAPER IS HIGHLIGHTED IN DARK.

No. #1 #2 #3 #4
Side 1 (3× 3, 64) (3× 3, 64) (3× 3, 64) (3× 3, 64)
Side 2 (3× 3, 128) (3× 3, 128) (3× 3, 128) (3× 3, 128)
Side 3 (3× 3, 128) (5× 5, 128) (5× 5, 128) (5× 5, 256)
Side 4 (3× 3, 128) (5× 5, 128) (5× 5, 256) (5× 5, 256)
Side 5 (3× 3, 128) (5× 5, 128) (5× 5, 256) (5× 5, 512)
Side 6 (192, 128) (192, 128) (256, 256) (256, 256)

representative images from various datasets to incorporate
a variety of difficult circumstances, including complicated
scenes, salient objects with thin structures, low contrast be-
tween foreground and background, multiple objects with dif-
ferent sizes, scenes with abnormal brightness, and etc. We
display a qualitative comparison in Fig. 4 where we split the
selected images into multiple groups, each of which is with
several tags to describe its properties. Taking all circumstances
into account, the proposed DNA can segment the right salient
objects with coherent boundaries and connected regions, even
in the complex, low-contrast, and abnormal scenes. This is
the reason why DNA behaves better than other methods in
the above quantitative comparison.

C. Ablation Studies

Nonlinear aggregation vs. linear aggregation. To demon-
strate the effectiveness of nonlinear aggregation, we replace
the DNA module in our network with the traditional linear
side-output prediction aggregation [26] to obtain a deeply-
supervised encoder-decoder, i.e., Encoder-Decoder w/ lin.
The results are shown in Table V. We can clearly see that
nonlinear aggregation performs significantly better than linear
aggregation, in terms of both Fβ and MAE. A qualitative
comparison between the linear side-output aggregation and
nonlinear aggregation is shown in the 4th and 5th columns of

Fig. 5. The superiority of nonlinear aggregation can be clearly
observed in various complicated scenarios.

The proposed encoder-decoder vs. standard U-Net. If
removing the DNA module and deep supervision, the proposed
encoder-decoder is a simply modified version of U-Net [25].
First, we change the kernel size of all convolutions at top
sides, i.e., K3 ×K3, K4 ×K4 and K5 ×K5, into 3× 3. As
displayed in Table V, the resulting model, Encoder-Decoder w/
K3, perform worse than the standard U-Net [25]. This could be
because the proposed encoder-decoder has less feature chan-
nels and thus less parameters (U-Net has 31.06M parameters).
Next, we use the default kernel size of 5 × 5 for top sides.
The resulting model, Encoder-Decoder, performs better than
U-Net. This demonstrates large kernel size at the top sides is
important for better performance. We provide the qualitative
comparison between Encoder-Decoder and U-Net in the 2nd

and 3rd columns of Fig. 5. The proposed Encoder-Decoder
can predict better saliency maps.

Encoder-decoder with or without deep supervision. In Ta-
ble V, Encoder-Decoder w/ lin performs better than Encoder-
Decoder, which can also be seen in the 3rd and 4th columns of
Fig. 5. If removing the deep supervision in DNA, the resulting
model (DNA w/o Deep Supervision) performs worse than DNA
in most scenarios. Therefore, deep supervision can consistently
improve the saliency prediction performance.

Parameter settings. To evaluate the effect of different param-
eter settings, we try various parameter settings in Table VII.
For side 1-5, we report the settings of (Ki × Ki, Ci). For
side 6, we report the settings of C(1)

6 , C
(2)
6 . The evaluation

results are summarized in Table VI. From the first and second
experiment, we can see that large kernel sizes at top sides lead
to better results, but the improvement is not as significant as in
Table V where deep supervision is not used. From the third and
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Image U-Net ED ED w/ lin DNA GT

Fig. 5. Qualitative comparison between different model variants. ED:
Encoder-Decoder; ED w/ lin: Encoder-Decoder w/ lin. From this figure, we
can clearly see that the quality of saliency prediction gradually increases from
left to right. Since ED w/ lin just replaces the nonlinear side-output aggregation
in DNA with linear aggregation, this figure demonstrates the superiority of
nonlinear aggregation in saliency detection.

TABLE VIII
VARIOUS CONVOLUTION KERNEL SIZES IN THE DNA MODULE.

Datasets Metrics 3× 3 5× 5 7× 7
1× 7
7× 1

1× 9
9× 1

DUTS-TE Fβ 0.861 0.863 0.865 0.865 0.864
MAE 0.045 0.045 0.043 0.044 0.044

ECSSD Fβ 0.930 0.933 0.935 0.935 0.935
MAE 0.042 0.041 0.041 0.041 0.040

DUT-O Fβ 0.795 0.797 0.799 0.799 0.798
MAE 0.058 0.058 0.057 0.056 0.056

Speed (fps) 27.8 23.2 19.6 25.0 20.4

fourth experiments, we find that introducing more parameters
by increasing the convolution channels can generate slightly
better results. Considering the trade-off between the perfor-
mance, the number of parameters and speed, we choose the
second setting as our default parameters.

The asymmetric convolutions in DNA module. In Ta-
ble VIII, we evaluate various convolution kernel sizes for the
DNA model. Large convolution kernel sizes perform better
than small kernel sizes, but increasing kernel size from 7
to 9 does not improve the performance. The standard two-
dimensional 7 × 7 convolution is time-consuming as shown
in Table VIII, because the feature maps in DNA is with the
same resolution as original images. Hence, we use asymmetric
convolutions (i.e., 1 × 7, 7 × 1) to achieve both large kernel
size and fast speed.

VI. CONCLUSION

Previous deeply-supervised saliency detection networks use
linear side-output prediction aggregation. We theoretically and
experimentally demonstrate that linear side-output aggregation
is suboptimal and worse than nonlinear aggregation. Based
on this observation, we propose the DNA module that ag-
gregates multi-level side-output features in a nonlinear way.

With a simply modified U-Net, DNA can reach new state-
of-the-art under various metrics when compared with 16
recent saliency models. The proposed network also has less
parameters and faster running speed, which demonstrate the
effectiveness of DNA. In the future, we plan to apply DNA to
further improve salient object detection and exploit it in other
vision tasks that need multi-scale and multi-level information.
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