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Lightweight Salient Object Detection via
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Abstract—Recently, salient object detection (SOD) has wit-
nessed vast progress with the rapid development of convolutional
neural networks (CNNs). However, the improvement of SOD
accuracy comes with the increase in network depth and width, re-
sulting in large network size and heavy computational overhead.
This prevents state-of-the-art SOD methods from being deployed
into practical platforms, especially mobile devices. To promote the
deployment of real-world SOD applications, we aim at developing
a lightweight SOD model in this paper. Our observation comes
from that the primate visual system processes visual signals
hierarchically with different receptive fields and eccentricities
in different visual cortex areas. Inspired by this, we propose a
Hierarchical Visual Perception (HVP) module to imitate the pri-
mate visual cortex for hierarchical perception learning. With the
HVP module incorporated, we design a lightweight SOD network,
namely HVPNet. Extensive experiments on popular benchmarks
demonstrate that HVPNet achieves highly competitive accuracy
compared with state-of-the-art SOD methods while running at a
4.3fps CPU speed and a 333.2fps GPU speed with only 1.23M
parameters.

Index Terms—Lightweight salient object detection, lightweight
saliency detection, hierarchical visual perception.

I. INTRODUCTION

THE human vision system can detect the most arresting
objects or regions in natural images rapidly and automat-

ically. Salient object detection (SOD) aims at imitating such
a human instinct to capture the most eye-catching area in an
image. The progress in SOD has benefited a broad range of
computer vision applications, including object detection [1],
image retrieval [2], visual tracking [3], image thumbnailing
[4], etc. Conventional SOD methods [5], [6] mainly rely
on hand-crafted low-level features. In spite of the efficiency,
the lack of representation capacity for high-level semantics
makes these methods difficult to model complicated natural
scenes. Due to the powerful capacity in representation learn-
ing, convolutional neural networks (CNNs), especially fully
convolutional networks (FCNs), have dominated this field.
Numerous CNN- and FCN-based SOD approaches [7]–[22]
have pushed the state of the art forward.

However, the accuracy improvement is not free. Traditional
SOD requires a strong backbone (i.e., encoder) to capture
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both low-level fine-grained details and high-level semantic
features, and a carefully calibrated decoder to recover the
spatial resolution without losing spatial information, both of
which may bring tremendous parameters and computational
overhead [7]–[18], [22]–[32]. On the contrary, recent increased
interest in mobile applications, such as cell phones, where the
computational capacity, memory space, and energy support
are limited, cannot deploy these large SOD models. The cost
of deploying these large models on the servers is also high.
This inspires us to consider the efficiency and the number
of network parameters as important as the accuracy in the
evaluation of SOD methods.

With the aforementioned consideration, we aim at designing
a lightweight SOD model to promote practical SOD systems.
Although lightweight network architecture has been studied in
other vision tasks, such as image classification [33]–[36], di-
rectly applying lightweight backbone networks for SOD leads
to suboptimal performance. This is because SOD has special
requirements in multi-scale learning as described above, while
lightweight backbone networks, such as MobileNets [33],
[34] and ShuffleNets [35], [36], focus on capturing high-level
semantics and are less powerful in multi-scale learning than
traditional large networks that are deeper, wider, and more in
the number of convolution filters. Therefore, lightweight SOD
is still a challenging problem, and the key is how to effectively
learn multi-scale contexts in a lightweight setting.

We get inspiration from the primate visual system to tackle
this problem because modeling human visual perception for
scene interpretation is a strong trend in computer vision [37].
About 55 percent of the neocortex of the primate brain is
associated with vision [38], and the processing pipeline is in
a hierarchical structure [39]–[41]. Multi-scale visual signals
are hierarchically processed in different cortex areas that have
different population receptive fields (pRFs) [42]. Wandell et
al. [42] found that the pRF size increases with eccentricity in
retinotopic maps. A recent study [43] attempts to simulate the
size and eccentricity of pRF using the kernel size and dilation
rate of the convolution layer, respectively, so that the kernel
size and dilation rate have a similar positive functional relation
as that of the size and eccentricity of pRF. A simple way to
simulate the primate visual system is the parallel organization
of various pRF. However, this ignores the visual hierarchy in
the visual cortex, which has been studied in the conventional
computer vision, i.e., before deep learning [44], [45]. In this
paper, we propose the Hierarchical Visual Perception (HVP)
module to simulate the structure of the primate visual cortex.
The HVP module uses a densely-connected structure to imitate
the visual hierarchies and dilated convolution to imitate the
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pRF. Experimental results suggest that using the kernel sizes
and dilation rates in the descending order performs best,
which is consistent with Hochstein and Ahissar’s Reverse
Hierarchy Theory (RHT) [40] that claims visual perception
begins at the higher levels and travels to the lower areas.
With the HVP module and attention mechanism incorporated,
we design a lightweight SOD network, namely HVPNet.
Extensive evaluation on popular benchmarks demonstrates
that HVPNet with only 1.23M parameters achieves highly
competitive accuracy compared with state-of-the-art methods
while running at a CPU speed of 4.3fps and a GPU speed of
333.2fps for 336× 336 images.

We summarize our contribution as follows:
• We propose a novel Hierarchical Visual Perception (HVP)

module to imitate the primate visual hierarchies for better
multi-scale learning.

• With the HVP module and attention mechanism incor-
porated, we design HVPNet that is the first lightweight
SOD network as we know.

• We conduct extensive experiments to investigate and
evaluate the proposed HVPNet that thus serves as a strong
baseline for future lightweight SOD research.

II. RELATED WORK

In this section, we first summarize recent progress in SOD
and then review literature about lightweight deep learning.

a) Salient Object Detection: Traditional SOD methods
[5], [6], [46]–[48] mainly rely on hand-crafted features and
heuristic priors. Due to the restricted representation capacity,
hand-crafted features have been gradually replaced by deep
learning. Thanks to the powerful capacity of feature represen-
tation learning of CNNs and FCNs, this field has witnessed
the burst of numerous CNN- and FCN-based methods [7]–
[12], [14], [15], [17]–[32], [49]–[53] in the last five years.

Most efforts of these deep models are on how to effectively
fuse the multi-scale information of various side-outputs [54],
[55]. Some methods [56]–[60] directly concatenate or sum
the side-output features. Some methods [61], [62] perform
saliency prediction using side-output features and then fuse all
side-output prediction to obtain the final saliency map. Most
methods [7]–[20], [22]–[31] use the encoder-decoder structure,
in which the encoder is usually backbone networks for image
classification [63], and the decoder is responsible for side-
output feature fusion. Some clever designs have attracted much
attention in this field. For example, PiCANet [12] proposes to
apply bidirectional LSTM to compute global contexts. RAS
[61] presents a reverse attention mechanism to manage side-
outputs in a top-down way.

While the accuracy has been improved with the increase
in network depth and width, the substantial computational
overhead and large network size have hindered state-of-the-
art SOD methods from being deployed into practical systems,
especially for mobile devices. For example, the recent state-
of-the-art method, EGNet [64], has 108M parameters, which
exceeds the tolerance of most mobile devices. Instead of
continuing to go in this direction, in this paper, we pave a
new path for SOD, i.e., lightweight SOD, which has great

Input

Output

F1×1(F̂r×r(·))

F1×1(F̂3×3
r (·))

r = 7

r = 5

r = 3

r = 1

Fig. 1. Illustration of the proposed HVP module.

potential to promote SOD into more practical applications.
Our proposed HVPNet performs comparably with state-of-
the-art methods while maintaining high efficiency and small
network size.

b) Lightweight Neural Networks: In many real-world
applications, visual recognition tasks must be carried out
in a timely, power-saving, and memory-friendly fashion
with computational resource constraints. Although it has not
been brought into SOD, many other vision tasks have built
lightweight models to satisfy real-world requirements using
weight quantization [65], [66], network compression [67],
[68], computationally efficient architecture design [33]–[36],
etc. Notably, for some vision tasks, such as image classification
[33]–[36], lightweight networks have shown their superiority
by reducing the model size and floating-point operations
(FLOPs) with a little performance drop. MobileNets [33], [34]
adopt depth-wise separable convolutions to approximate the
representation ability of regular convolutions with significantly
reduced parameters. Based on the depth-wise convolution,
ShuffleNets [35], [36] utilize a channel shuffle operation to
further reduce the redundancy of point-wise convolutions.
We share the same spirits with prior arts [33]–[36] to build
our model using depth-wise separable convolutions, while
our main technical contribution comes from the observation
about the hierarchical primate visual system. We propose the
HVP module to imitate the primate visual hierarchies and
pRF. We also explore the attention mechanism for further per-
formance improvement. With these components incorporated,
the proposed HVPNet achieves comparable performance with
state-of-the-art methods while in an extremely lightweight
setting.

III. METHODOLOGY

In this section, we elaborate on our lightweight SOD
network architecture. Concretely, we introduce our motivation
from the primate visual system in Section III-A. Then, we
present the primary building block, namely, Hierarchical Vi-
sual Perception (HVP) module in Section III-B. Other network
components and the overall architecture are summarized in
Section III-C and Section III-D, respectively.

A. Motivation and Principles

Lots of neurophysiological evidence suggests that a se-
quence of different levels of signal processing (8 to 10 levels)
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constitute the hierarchical signal processing in the primate
visual system [39]–[41]. The hierarchical processing exhibits
straightforward superiority over the so-called flat processing
that processes signals in a parallel way [45]. In fact, there is a
large amount of neurophysiological evidence that cognition is
associated with the concept of the deep hierarchy [69]. This
is intuitive because our eye does not perceive all contents in
a natural scene at first glance but recognize objects with the
highest contrast to their surroundings first, which is a simple
understanding of the visual hierarchy. The capacity of the
primate visual system to process information at hierarchical
levels has inspired computer vision research. Please refer to
[70] for a summation.

On the other hand, neurons in different cortex areas have
different population Receptive Field (pRF) sizes, and the pRF
size increases with eccentricity in each retinotopic map [42].
The impact of the eccentricity of pRF in the visual system
can be simulated by dilated convolutions [43]. Specifically, we
can imitate pRF size with the kernel size and the eccentricity
with dilation rate, so that the kernel size and dilation rate
have the same positive functional relation as that of the size
and eccentricity of pRF. However, this simple flat processing
[45] for feature learning from different pRFs, i.e., with par-
allel connections, is suboptimal, because it ignores the basic
concept of the deep hierarchy in the primate visual system. In
the experiments, we will demonstrate the design of the parallel
connection is suboptimal for lightweight SOD.

In this paper, we propose a more realistic approach to mimic
the primate visual system. We still use dilated convolution to
imitate the pRF. In order to imitate the positive correlation
between the size and eccentricity of pRF, a large dilation rate
will correspond to the large kernel size. Instead of using simple
parallel connections, we adopt serial connections for different
pRFs. Since the practical connections of the primate visual
system are involved, without an exact connection order, we
propose to impose dense connections for different pRFs so
that the output feature of one pRF will serve as the input for
all of the following pRFs. Moreover, Hochstein and Ahissar’s
reverse hierarchy theory (RHT) [40] claims that the visual
system first generates perception at higher levels and then
travels to low levels, which means that visual attention works
in a coarse-to-fine way. Hence the proposed HVP module puts
large kernel sizes and dilation rates at the beginning to capture
the high-level information (with large pRF). Intuitively, the
primate visual system in a pre-attentive vision sends the infor-
mation to interpret the scene at a glance, i.e., only large details.
Experimental results show that arranging kernel sizes and
dilation rates in the descending order outperforms other orders,
which demonstrates our hypothesis about HVP and RHT.
Therefore, the proposed HVP module is not only theoretically
but also experimentally reasonable.

B. Hierarchical Visual Perception Module

With the principles described above, we continue by elabo-
rating on the proposed HVP module. As shown in Fig. 1, we
adopt dilated convolutions to imitate different visual cortex
areas that have different pRFs whose size and eccentricities

have similar relation to the kernel size and dilation rate of
convolution. Here, we use depth-wise separable convolution
(DSConv) [33] and point-wise convolution (i.e., the vanilla
1 × 1 convolution) as the atomic operations to reduce pa-
rameters and computational load. Let Fk×k be the vanilla
convolution with the kernel size of k× k. For example, F1×1

is the vanilla 1× 1 convolution. Suppose that F̂k×kd denotes a
DSConv with the kernel size of k× k and the dilation rate of
d, and we omit the subscript for d = 1, i.e., F̂k×k1 = F̂k×k.

Each simulation unit for pRF is composed of a DSConv
with the kernel size of r and a DSConv with the dilation rate
of r, which can be formulated as

Rr(X) =

{
F1×1(X), if r = 1;

F1×1(F̂3×3
r (F1×1(F̂r×r(X)))), if r > 1,

(1)
where standard batch normalization [71] and PReLU [72]
layers are connected after each convolution layer. Here, we
imitate the pRF size with the kernel size of F̂r×r and the
eccentricity with the dilation rate of F̂3×3

r , so that the pRF
size and the pRF eccentricity have the same positive functional
relation. Note that we use two convolutions of F̂r×r and
F̂3×3
r , not a single convolution of F̂r×rr , because F̂r×rr would

have large sparse convolution kernels (e.g., r > 3) that
is suboptimal for network training [73] and inefficient for
network inference. Applying Eq. (1) with different values
of r, we can imitate different areas on the primate visual
cortex, e.g., the occipital areas V1 to hV4 whose sizes and
eccentricities of pRF gradually increase. In the concept of deep
learning, we can learn multi-scale information with various
receptive fields in this way.

As discussed in Section III-A, the processing of different vi-
sual cortex areas is organized in a hierarchical manner. Instead
of using “flat” processing as in the existing computer vision
systems [74], [75], we propose to use hierarchical processing.
Specifically, we connect the simulation units for different pRFs
in a serial way. Besides, connections on the visual cortex are
very complicated, and one area is not only connected to one
other area. Hence, we apply dense connections [76] for pRF
simulation units to mimic the complex connections on the
visual cortex so that the output of one pRF will be viewed as
the input signals for all of the following pRFs. Formally, the
output responses of all preceding pRF units are concatenated
to serve as the input for the next unit, i.e.,

Xi = Rri(Concat(X0,X1, · · · ,Xi−1)), 1 ≤ i ≤ N, (2)

where N is the number of pRF units, and X0 (Xi with
i = 0) denotes the input for an HVP module. Concat(·)
represents the concatenation operation. The number of output
channels and convolution groups of the first DSConv F̂ri×ri(·)
in Rri is equal to the number of channels of X0. Other
convolutions in Rri have the same number of channels as
X0. From the perspective of deep learning, dense connections
bring increased depth and more powerful representation space
that leads to better performance.

The last problem is how to decide the order of pRFs.
We follow the reverse hierarchy theory [40] to first generate
visual perception at large pRFs and then flow the perception
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into small pRFs. Therefore, we use a descending order of
kernel sizes/eccentricities of convolutions for imitating pRFs.
For example, we adopt a sequence of r values of 7, 5, 3, 1
for each HVP module. Intuitively, human eyes usually see
large objects (large pRFs) at first glance and then gradually
focalize to fine-grained image details. This is also similar to
the principle of hierarchical representations used for image
retrieval and scalable indexes [77]. Our experimental results
also demonstrate that the descending order performs better
than any other order.

C. Attention and Dropout Mechanism
The attention mechanism has been demonstrated to be

effective [10], [12], [17], [60], [61], [78]. Instead of only
using spatial attention to adaptively highlight or suppress
certain locations as in these methods, we further include
channel attention to explore inter-channel dependencies and
re-calibrate channel activation. On the other hand, we insert
the attention mechanism in the encoder network, while the
above previous methods adopt attention in the decoder because
their encoder is usually fixed to existing backbone networks.

a) Channel Attention: The channel attention mechanism
is first introduced in [79]. Let X ∈ RC×H×W be the input
activation, in which C, H , and W are the number of channels,
height, and width, respectively. We first apply global average
pooling (GAP) to extract the channel-wise representations, i.e.,

dc = GAP (X) =
1

HW

H∑
i=1

W∑
j=1

Xc,i,j , (3)

in which dc is the c-th value of the feature vector d ∈ RC ,
and Xc,i,j is the value of X at coordinates (c, i, j). Then,
we employ a simple soft-gating mechanism to calculate the
per-channel importance, namely,

d̂ = σ(F1×1(ψ(F1×1(d)))), (4)

where the inner and outer 1 × 1 convolutions have C
r and

C output channels, respectively. Here, r denotes the rate for
channel reduction. Hence, we have d̂ ∈ RC . ψ refers to
the standard nonlinear activation function [80], and σ is the
Sigmoid soft-gating function. Afterwards, channel activation
is re-calibrated in a multiplicative manner, i.e.,

X̃ = d̂⊗X, (5)

where d̂ is duplicated into the size of C × H ×W , and ⊗
indicates element-wise multiplication.

b) Spatial Attention: Given the re-calibrated features X̃ ,
we extract the pixel-wise importance based on local responses.
Our operation is computationally efficient for the requirement
of lightweight SOD. Concretely, we adopt a simple k × k
convolution with a single output channel, and again use
soft-gating mechanism (i.e., Sigmoid) to compute the spatial
multipliers. Mathematically, we have

v = σ(Fk×k(X̃)), (6)

where we have v ∈ RH×W . Similarly, the spatially re-
calibrated activation are formulated as

X̂ = v ⊗ X̃, (7)

TABLE I
ENCODER CONFIGURATIONS OF THE PROPOSED LIGHTWEIGHT SOD

MODEL. “MODULE”, “#M”, “#F”, “K”, AND “S” REPRESENT THE
MODULE TYPE, THE NUMBER OF MODULES, THE NUMBER OF

CONVOLUTION FILTERS, KERNEL SIZE, AND STRIDE, RESPECTIVELY.
“RESATT” REFERS TO THE RESIDUAL ATTENTION IN SECTION III-C.

Stage Resolution Module #M #F K S

1 224× 224 Conv 1 16 3 2
112× 112 Conv & ResAtt 1 16 3 1

2 112× 112 DSConv 1 32 5 2
56× 56 HVP & ResAtt 1 32 7-5-3-1 1

3 56× 56 DSConv 1 64 5 2
28× 28 HVP & ResAtt 3 64 7-5-3-1 1

4 28× 28 DSConv 1 128 5 2
14× 14 HVP & ResAtt 5 128 7-5-3-1 1

where v is duplicated to the size of C × H × W before
multiplication.

c) Residual Attention: As we employ attention mecha-
nism sequentially and iteratively, multiplying by factors within
the range of (0, 1) would weaken the activation gradually,
leading to vanishing gradients. To this end, we employ residual
learning [63] to facilitate gradient propagation. Finally, the
output activation become

Y = X̂ +X. (8)

d) Dropout: Overfitting is always a pesky problem in
deep learning. The strategy of dropping CNN activation is
shown to be useful in increasing the generalization capability
and avoiding overfitting [81], [82]. In this paper, we connect a
standard dropout layer [81] with a dropout rate of 0.1 before
each HVP module in training. Unlike the recent attention-
based dropout strategy [82] that drops activation according to
the computed saliency map, the attention and dropout in our
method are independent for a fair comparison with previous
SOD methods. In other words, the exploration of the new
dropout strategy is out of the scope of this paper, so we follow
previous literature to use the standard dropout layer [81] in this
paper. In testing, the dropout layers are directly abandoned.

D. Network Architecture

With the aforementioned components, we build an encoder-
decoder network with lateral connections, namely HVPNet.
For the encoder, we stack the proposed HVP modules for
fast deep feature extraction in a bottom-up manner. For the
decoder, we use a simple method to integrate the high-level
semantic features and low-level fine-grained details in a top-
down way. The details of our design are introduced as follows.

a) Encoder Network: Our encoder consists of 4 stages,
and the default configurations for each stage are summarized
in Table I. At the s-th stage, the input activation Fs−1 is
first downsampled by a (depth-wise separable or vanilla)
convolution with stride 2, which is formulated as

Fs = Concat(Hs(Fs−1),MaxPool2(Fs−1)), (9)
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where MaxPool2 denotes the max pooling operator with the
stride of 2. Standard batch normalization and PReLU follow
Eq. (9). Hs is defined as

Hs(F ) =

{
F3×3(F ), if s = 1;

F̂5×5(F1×1(F )), if s > 1.
(10)

For the first stage, the input is the color image that only has
three channels, so we directly use a vanilla strided convolution.

b) Decoder Network: Given the four output features
{Fs : s = 1, 2, 3, 4} of the encoder network, the goal of the
decoder is to integrate features of different scales step by step
and gradually resume the spatial resolution. For the fusion of
the top features F3 and F4, we first upsample F4 by a factor of
2 to match the resolution of F3, and then a 1× 1 convolution
is applied to adjust the number of channels. Afterwards, the
feature map is equally split into two feature maps in terms of
the channel dimension, with each split refined at a different
scale. Formally, we have

U4 = Upsample(F4), (11)

Q3 = Concat(F3×3(Ũ1
4 ),F3×3

2 (Ũ2
4 )), (12)

where Ũ1
4 and Ũ2

4 denote the two channel splits of F1×1(U4).
Finally, features are integrated by a simple element-wise
summation, i.e.,

D3 = ψ(BN(Q3) + BN(F1×1(F3))), (13)

where BN and ψ are standard batch normalization [71] and
nonlinear activation function [72]. D3 is passed to the bottom
stages. For the feature fusion of the bottom stages, Eq. (11)
is simply adapted to Us = Upsample(Ds), and all of the
remaining operations are preserved. In the end, we obtain the
integrated features {Ds : s = 1, 2, 3, 4} at different scales
(D4 = F4), which will be re-visited when calculating the
final training loss.

c) Deep Supervision & Loss Function: We employ deep
supervision [83] to ease the optimization of the latent units.
For each fused feature Ds, s = 1, 2, 3, 4, we project it to
a single-channel feature map via a point-wise convolution.
A Sigmoid activation function is utilized to get the saliency
predictions Ps. We use the binary cross entropy (BCE) loss
for supervision, which is formulated as

L = BCE(P1,G) + λ

4∑
s=2

BCE(Ps,G), (14)

where G refers to the ground-truth, and λ is a hyper-parameter
that is empirically set to 0.4 as in [75]. Note that P1 is the
output saliency map of the proposed HVPNet.

IV. EXPERIMENTS

A. Experimental Configurations

a) Implementation Details: We implement the proposed
HVPNet using the popular PyTorch library. By default, we
train our model using Adam optimizer with the weight decay
of 10−4, and the batch size of 20. Our model and its variants
are trained from scratch for 50 epochs for ablation studies.
When comparing with the state-of-the-art methods, we pretrain

HVPNet on the ImageNet as commonly done in state-of-the-
art methods. The learning rate decays with poly scheduler, i.e.,

curr lr = init lr×
(
1− curr iter

max iter

)power

, (15)

where init lr = 5× 10−4 and power = 0.9 are used.
b) Datasets: We conduct experiments on six popular

datasets, namely ECSSD [85], DUT-O (i.e., DUT-OMRON)
[5], DUTS [86], HKU-IS [49], SOD [87], and THUR15K [88].
These six datasets contain 1000, 5168, 15572, 4447, 300, and
6232 pairs of natural images and saliency maps, respectively.
The DUTS [86] dataset is divided into 10553 training images
and 5019 test images. Following recent works [7], [12], [57],
[59], [64], we train models on the DUTS training set and
evaluate models on the DUTS test set (DUTS-TE) as well as
the other five datasets.

c) Evaluation Metrics: For evaluation, we adopt two
widely-used metrics, i.e., F-measure and mean absolute error
(MAE). F-measure, denoted by Fβ , is based on the precision
and recall of the prediction, like

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
, (16)

where β2 is set to 0.3 to highlight the precision. MAE is a
pixel-wise average of the absolute prediction error, which can
be formulated as

MAE(P ,G) =
1

HW

H∑
i=1

W∑
j=1

|Pij −Gij | , (17)

where P is the predicted saliency map, G is the corresponding
ground-truth, H is the image height, and W is the image
width.

d) Lightweight Measures: The lightweight setting is the
core consideration of this paper. Here, we elaborate on the
lightweight measures. If a model has specified its input dimen-
sions, we will use its default settings for testing. Otherwise,
we adopt 336 × 336 as its input size to test its speed and
compute its number of FLOPs. The CPU speed in this paper
is tested on an Intel i7-8700K CPU, and the GPU speed is
tested using an NVIDIA TITAN Xp GPU.

B. Performance Comparison

a) Comparison with Former SOD Methods: We compare
the proposed HVPNet with 15 state-of-the-art SOD meth-
ods. Table II shows the quantitative results. Our method
achieves comparable performance with previous state-of-the-
art BASNet [28] and EGNet [64], but significantly reduces
the parameters and flops. For example, our method achieves
92.5% F-measure on ECSSD, slightly lower than the 93.8%
F-measure of EGNet, but we only need 1.1% parameters of
EGNet. We also achieve the fastest speed and minimal FLOPs
than previous methods. Specifically, we can reach 333.2fps,
while previous methods can only reach the best speed of 68fps.
The number of FLOPs of HVPNet is only 1.1G. Since the
number of FLOPs is related to energy consumption, the small
number of FLOPs of HVPNet makes it friendly to mobile
applications.
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TABLE II
COMPARISON WITH EXISTING SOD METHODS. THE NUMBER OF FLOPS IS COMPUTED USING A 336× 336 INPUT EXCEPT THAT A METHOD HAS
SPECIFIED ITS OWN INPUT DIMENSIONS. WE LABEL THE BEST PERFORMANCE IN EACH COLUMN IN BOLD. HERE, THE MAIN ADVANTAGE OF OUR

APPROACH LIES IN THE TRADE-OFF BETWEEN ACCURACY AND EFFICIENCY.

Methods #Param FLOPs Speed ECSSD DUT-O DUTS-TE HKU-IS SOD THUR15K
(M) (G) (FPS) Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

DRFI [6] - - 0.1 0.777 0.161 0.652 0.138 0.649 0.154 0.774 0.146 0.704 0.217 0.670 0.150
DCL [56] 66.24 224.9 1.4 0.895 0.080 0.733 0.095 0.785 0.082 0.892 0.063 0.831 0.131 0.747 0.096
DHSNet [15] 94.04 15.8 10.0 0.903 0.062 - - 0.807 0.066 0.889 0.053 0.822 0.128 0.752 0.082
RFCN [23] 134.69 102.8 0.4 0.896 0.097 0.738 0.095 0.782 0.089 0.892 0.080 0.802 0.161 0.754 0.100
NLDF [25] 35.49 263.9 18.5 0.902 0.066 0.753 0.080 0.806 0.065 0.902 0.048 0.837 0.123 0.762 0.080
DSS [62] 62.23 114.6 7.0 0.915 0.056 0.774 0.066 0.827 0.056 0.913 0.041 0.842 0.122 0.770 0.074
Amulet [14] 33.15 45.3 9.7 0.913 0.061 0.743 0.098 0.778 0.085 0.897 0.051 0.795 0.144 0.755 0.094
UCF [24] 23.98 61.4 12.0 0.901 0.071 0.730 0.120 0.772 0.112 0.888 0.062 0.805 0.148 0.758 0.112
SRM [59] 43.74 20.3 12.3 0.914 0.056 0.769 0.069 0.826 0.059 0.906 0.046 0.840 0.126 0.778 0.077
PiCANet [12] 32.85 37.1 5.6 0.923 0.049 0.766 0.068 0.837 0.054 0.916 0.042 0.836 0.102 0.783 0.083
BRN [7] 126.35 24.1 3.6 0.919 0.043 0.774 0.062 0.827 0.050 0.910 0.036 0.843 0.103 0.769 0.076
C2S [9] 137.03 20.5 16.7 0.907 0.057 0.759 0.072 0.811 0.062 0.898 0.046 0.819 0.122 0.775 0.083
RAS [61] 20.13 35.6 20.4 0.916 0.058 0.785 0.063 0.831 0.059 0.913 0.045 0.847 0.123 0.772 0.075
CPD [84] 29.23 59.5 68.0 0.930 0.044 0.794 0.057 0.861 0.043 0.924 0.033 0.848 0.113 0.795 0.068
BASNet [28] 87.06 127.3 36.2 0.938 0.040 0.805 0.056 0.859 0.048 0.928 0.032 0.849 0.112 0.783 0.073
EGNet [64] 108.07 270.8 12.7 0.938 0.044 0.794 0.056 0.870 0.044 0.928 0.034 0.859 0.110 0.800 0.070
HVPNet (OURS) 1.23 1.1 333.2 0.925 0.055 0.799 0.064 0.839 0.058 0.915 0.045 0.826 0.122 0.787 0.076

TABLE III
COMPARISON BETWEEN THE PROPOSED HVPNET AND EXISTING LIGHTWEIGHT BACKBONE NETWORKS. WE REFORM THESE LIGHTWEIGHT BACKBONE

NETWORKS FOR SOD BY VIEWING THEM AS THE ENCODER AND ADDING THE SAME DECODER AS HVPNET TO THEM. THE BEST PERFORMANCE IS
HIGHLIGHTED IN BOLD.

Backbone ECSSD DUT-O DUTS-TE HKU-IS SOD THUR15K
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

MobileNet [33] 0.892 0.127 0.743 0.091 0.792 0.090 0.885 0.098 0.765 0.208 0.759 0.090
MobileNetV2 [34] 0.903 0.066 0.760 0.072 0.804 0.067 0.896 0.053 0.807 0.137 0.768 0.082
ShuffleNet [36] 0.913 0.061 0.764 0.069 0.813 0.063 0.901 0.051 0.815 0.130 0.771 0.080
ShuffleNetV2 [35] 0.898 0.070 0.751 0.076 0.789 0.072 0.885 0.059 0.785 0.147 0.756 0.087
HVPNet (OURS) 0.925 0.055 0.799 0.064 0.839 0.058 0.915 0.045 0.826 0.122 0.787 0.076

Fig. 2. Illustration of the trade-off among F-measure, the number of parameters, FLOPs, and speed. Here, the F-measure is the average of all six datasets for
test. Note that the horizon axis is logarithmic.

To better illustrate the trade-off between the accuracy and
efficiency, we plot three figures in Fig. 2, showing the F-
measure against the number of parameters, the number of
FLOPs, and speed, respectively. Here, we adopt the average
F-measure over all six datasets for clarity. In the figures of F-
measure vs.parameters and F-measure vs.FLOPs, HVPNet lies
at the top left, which demonstrates its extremely lightweight
setting and good accuracy. In the figure of F-measure vs.speed,
HVPNet lies at the top right, which demonstrates its good
trade-off between accuracy and speed. Therefore, we can come
to the conclusion that HVPNet achieves a good trade-off
among accuracy, the number of parameters, the number of
FLOPs, and the speed.

In Fig. 3, we display some qualitative comparison with
state-of-the-art SOD methods. To clearly show the difference

between the predicted saliency maps of various methods, we
calculate the similarity of each predicted saliency map to the
corresponding ground-truth saliency map. Here, we adopt three
similarity metrics, including Pearson’s Correlation Coefficient
(PCC or CC), Similarity (or histogram intersection, denoted
as SIM), and SSIM [89]. Please refer to the survey paper [90]
of saliency metrics for more details about PCC/CC and SIM,
while SSIM [89] is a well-known metric for structural simi-
larity measurement. From Fig. 3, we can observe that in spite
of the extremely lightweight setting, HVPNet outperforms
previous methods in strange objects, (lines 1-2), confusing
scenarios (lines 3-4), thin objects (line 5), complex background
(lines 6-7), indistinguishable boundaries (line 8), and large
objects (lines 9-10). This further demonstrates the superiority
of HVPNet.
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TABLE IV
ABLATION STUDIES. “PA”, “SE”, “DC”, “CA”, “SA”, “DP”, AND “IP” REFER TO PARALLEL CONNECTION, SERIES CONNECTION, DENSE CONNECTION,

CHANNEL-WISE ATTENTION, SPATIAL ATTENTION, DROPOUT, AND IMAGENET PRETRAINING, RESPECTIVELY.

No. Component ECSSD DUT-O DUTS-TE HKU-IS SOD THUR15K
PA SE DC CA SA DP IP Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

1 ! 0.906 0.065 0.769 0.073 0.799 0.071 0.892 0.056 0.798 0.138 0.759 0.087
2 ! 0.893 0.075 0.750 0.080 0.777 0.080 0.879 0.064 0.792 0.152 0.749 0.091
3 ! ! 0.909 0.062 0.772 0.072 0.807 0.068 0.899 0.053 0.798 0.138 0.766 0.085
4 ! ! ! 0.911 0.062 0.776 0.071 0.807 0.069 0.898 0.053 0.811 0.135 0.765 0.084
5 ! ! ! 0.908 0.062 0.768 0.073 0.804 0.069 0.895 0.054 0.809 0.136 0.765 0.085
6 ! ! ! ! 0.912 0.062 0.772 0.071 0.808 0.068 0.898 0.053 0.801 0.138 0.766 0.084
7 ! ! ! ! ! 0.910 0.065 0.781 0.070 0.814 0.068 0.900 0.054 0.809 0.141 0.769 0.083
8 ! ! ! ! ! ! 0.925 0.055 0.799 0.064 0.839 0.058 0.915 0.045 0.826 0.122 0.787 0.076

TABLE V
ABLATION STUDIES. “KERNEL ORDER” MEANS THE ORDER OF r IN EQ. (1) IN EACH HVP MODULE. WE USE “#MODULES” TO DEPICT THE NUMBERS OF

HVP MODULES FOR FOUR STAGES OF THE ENCODER. THE DEFAULT CONFIGURATION IS WITH A SEQUENCE OF r VALUES OF 7, 5, 3, 1 AND THE
NUMBERS OF MODULES OF 1, 1, 3, 5.

Config. ECSSD DUT-O DUTS-TE HKU-IS SOD THUR15K
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

Default Config. 0.910 0.065 0.781 0.070 0.814 0.068 0.900 0.054 0.809 0.141 0.769 0.083

kernel order

1, 3, 5, 7 0.901 0.070 0.769 0.078 0.796 0.075 0.891 0.059 0.808 0.138 0.761 0.089
1, 5, 3, 7 0.900 0.070 0.768 0.077 0.790 0.077 0.889 0.060 0.795 0.145 0.762 0.089
3, 7, 1, 5 0.902 0.069 0.765 0.079 0.794 0.076 0.890 0.059 0.795 0.146 0.760 0.089
5, 1, 7, 3 0.905 0.068 0.774 0.076 0.801 0.073 0.892 0.057 0.803 0.137 0.762 0.088

dilation rates 9, 7, 5, 3, 1 0.911 0.066 0.778 0.074 0.807 0.071 0.899 0.055 0.814 0.141 0.766 0.087
5, 3, 1 0.910 0.065 0.772 0.075 0.800 0.073 0.894 0.056 0.809 0.141 0.764 0.088

#modules 1, 1, 2, 2 0.908 0.065 0.773 0.074 0.800 0.072 0.897 0.055 0.798 0.141 0.765 0.087
1, 1, 3, 8 0.906 0.064 0.772 0.076 0.796 0.073 0.893 0.057 0.801 0.141 0.765 0.089

#filters ×0.75 0.906 0.067 0.768 0.077 0.796 0.076 0.894 0.058 0.797 0.143 0.763 0.089
×1.25 0.915 0.062 0.786 0.072 0.816 0.068 0.902 0.053 0.822 0.137 0.773 0.083

b) Comparison with Lightweight Backbones: Although
so far there is no lightweight SOD model, there exist
lightweight backbone networks designed for efficient image
classification. Here, we add our lightweight decoder to four
lightweight backbones for SOD, including MoblieNet [33],
MobileNetV2 [34], ShuffleNet [36], and ShuffleNetV2 [35].
We adopt the same training settings as HVPNet to train these
baselines. Table III demonstrates the evaluation results. We
can observe that HVPNet achieves better results than directly
applying lightweight backbones for SOD. This demonstrates
that lightweight SOD is a worth studying and promising
research field. This also proves that the proposed method is
nontrivial.

C. Ablation Study

a) Effectiveness of Each Module Component: Table IV
verifies the effectiveness of each component of the proposed
HVPNet. Our efforts start with the design of a parallel
version of the HVP module. We find the densely-connected
series version of the HVP module can outperform parallel
connection, which verifies that processing visual conception in
a hierarchical manner is more effective. Then, we incorporate
the spatial and channel attention mechanisms into our encoder.
The results verify that including spatial and channel attention
simultaneously is beneficial to hierarchical visual perception
learning. We also investigate the impact of different training
strategies, i.e., dropout and ImageNet [91] pretraining. We find
both strategies can improve the generalization ability of our
model in a majority of the experimental settings.

b) Configurations of HVPNet: Table V demonstrates the
ablation results of various network configurations. Firstly,

setting kernel sizes in the descending order for each HVP mod-
ule consistently outperforms the other variants, implying the
correctness of the reverse hierarchy theory [40]. Secondly,
enhancing model capacity, i.e., incorporating another pRF
or increasing the number of filters, can slightly improve
performance, but leads to inefficiency, which is opposite to
the purpose of our design. Considering the trade-off between
accuracy and efficiency, we adopt the default settings as in
Table I.

D. Evaluation for Eye Fixation Prediction
Another task that is highly related to SOD is eye fixation

prediction. Unlike SOD that requires to segment the whole
salient objects from an image, eye fixation prediction only
aims at finding eye fixation points without the requirement
for the segmentation of objects. In some studies, eye fixation
prediction is also called saliency prediction. Here, we call
it eye fixation prediction to distinguish it from SOD. To
demonstrate the superiority of the proposed HVPNet, we also
evaluate it for eye fixation prediction on the well-known SAL-
ICON 2017 benchmark [97]. SALICON 2017 contains 10000
training images and 5000 validation images with ground-truth
annotations. The test set with 5000 images is released without
ground-truth because it is an online competition. All images
have the same resolution of 480×640. We train HVPNet for
10 epochs with a batch size of 8 and the standard loss function
in [94], [95]. Other training settings are kept the same as SOD.
For the evaluation metrics, we adopt four standard metrics in
eye fixation prediction, including NSS, CC, AUC, and sAUC,
using the code provided by the SALICON 2017 benchmark
[97]. Please refer to the survey paper [90] for more details
about these metrics.
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Fig. 3. Qualitative comparison with state-of-the-art SOD methods. The red, green, and pink numbers denote the PCC, SIM, and SSIM values between each
predicted saliency map and the corresponding ground-truth (GT), respectively.

TABLE VI
EVALUATION FOR EYE FIXATION PREDICTION ON THE SALICON 2017 BENCHMARK. THE NUMBER OF FLOPS IS COMPUTED USING A 480×640 INPUT

IMAGE. WE HIGHLIGHT THE BEST PERFORMANCE IN EACH COLUMN IN BOLD. THE PROPOSED HVPNET ACHIEVES SIMILAR RESULTS TO THE BEST
PERFORMANCE WITH AN EXTREMELY LIGHTWEIGHT SETTING.

Method Backbone Year #Param FLOPs VALIDATION SET TEST SET
(M) (G) NSS ↑ CC ↑ AUC ↑ sAUC ↑ NSS ↑ CC ↑ AUC ↑ sAUC ↑

MLNet [92] ResNet50 2016 15.42 123.2 1.422 0.584 0.769 0.697 1.453 0.583 0.764 0.687
SalGAN [93] ResNet50 2017 31.78 94.1 1.635 0.796 0.846 0.716 1.662 0.798 0.847 0.700
SAM [94] ResNet50 2018 70.09 343.6 1.966 0.900 0.866 0.758 1.990 0.899 0.865 0.741
EML-NET [95] ResNet50 2018 23.54 25.3 2.002 0.879 0.861 0.757 2.018 0.874 0.858 0.740
DINet [96] ResNet50 2019 27.03 156.7 1.957 0.907 0.864 0.759 1.972 0.907 0.863 0.741
HVPNet (OURS) - - 1.23 3.0 1.981 0.873 0.865 0.757 2.003 0.869 0.863 0.740

The evaluation results are summarized in Table VI. We
compare the proposed HVPNet with recent state-of-the-art eye
fixation prediction methods, including MLNet [92], SalGAN
[93], SAM [94], EML-NET [95], and DINet [96]. We can
find that HVPNet achieves similar results to the best per-
formance in terms of all evaluation metrics but with an ex-
tremely lightweight setting, i.e., significantly fewer parameters
and FLOPs. Therefore, we can come to the conclusion that
HVPNet achieves a good trade-off between effectiveness and
efficiency for both SOD and eye fixation prediction, making
it possible to be applied in practical applications.

V. CONCLUSION

Instead of only focusing on model accuracy, in this paper,
we explore a new direction for SOD, i.e., lightweight SOD,
which aims at achieving a good trade-off among accuracy, ef-
ficiency, the number of parameters, and the number of FLOPs.

Along this path, we present a novel HVP module to imitate
the primate visual cortex for hierarchical visual perception
learning. Building on the proposed HVP module, the proposed
HVPNet can achieve comparable accuracy with state-of-the-
art SOD models while maintaining much faster speed, much
fewer parameters, and FLOPs. To the best of our knowledge,
this is the first attempt in SOD towards accuracy-efficiency
trade-off and lightweight models. We demonstrate that directly
applying lightweight backbones [33]–[36] for SOD leads to
suboptimal performance, which suggests lightweight SOD is
worth studying and should be set up as a new research
direction. Through this study, we expect to arouse the research
for lightweight SOD that has the potential to promote more
practical SOD systems.

REFERENCES

[1] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is bottom-up
attention useful for object recognition?” in IEEE Conf. Comput. Vis.



IEEE TRANSACTIONS ON CYBERNETICS 9

Pattern Recog., vol. 2, 2004, pp. 37–44.
[2] W. Zhou, H. Li, and Q. Tian, “Recent advance in content-based image

retrieval: A literature survey,” arXiv preprint arXiv:1706.06064, 2017.
[3] P. Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review and

experimental comparison,” Pattern Recognition, vol. 76, pp. 323–338,
2018.

[4] L. Marchesotti, C. Cifarelli, and G. Csurka, “A framework for visual
saliency detection with applications to image thumbnailing,” in Int. Conf.
Comput. Vis., 2009, pp. 2232–2239.

[5] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, “Saliency detection
via graph-based manifold ranking,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2013, pp. 3166–3173.

[6] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, “Salient object
detection: A discriminative regional feature integration approach,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2013, pp. 2083–2090.

[7] T. Wang, L. Zhang, S. Wang, H. Lu, G. Yang, X. Ruan, and A. Borji,
“Detect globally, refine locally: A novel approach to saliency detection,”
in IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 3127–3135.

[8] L. Zhang, J. Dai, H. Lu, Y. He, and G. Wang, “A bi-directional message
passing model for salient object detection,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2018, pp. 1741–1750.

[9] X. Li, F. Yang, H. Cheng, W. Liu, and D. Shen, “Contour knowledge
transfer for salient object detection,” in Eur. Conf. Comput. Vis., 2018,
pp. 355–370.

[10] X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang, “Progressive attention
guided recurrent network for salient object detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2018, pp. 714–722.

[11] W. Wang, J. Shen, X. Dong, and A. Borji, “Salient object detection
driven by fixation prediction,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2018, pp. 1711–1720.

[12] N. Liu, J. Han, and M.-H. Yang, “PiCANet: Learning pixel-wise
contextual attention for saliency detection,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2018, pp. 3089–3098.

[13] M. A. Islam, M. Kalash, and N. D. Bruce, “Revisiting salient object
detection: Simultaneous detection, ranking, and subitizing of multiple
salient objects,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp.
7142–7150.

[14] P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan, “Amulet: Aggregating
multi-level convolutional features for salient object detection,” in Int.
Conf. Comput. Vis., 2017, pp. 202–211.

[15] N. Liu and J. Han, “DHSNet: Deep hierarchical saliency network for
salient object detection,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2016, pp. 678–686.

[16] S. He, J. Jiao, X. Zhang, G. Han, and R. W. Lau, “Delving into salient
object subitizing and detection,” in Int. Conf. Comput. Vis., 2017, pp.
1059–1067.

[17] W. Wang, S. Zhao, J. Shen, S. C. Hoi, and A. Borji, “Salient object
detection with pyramid attention and salient edges,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019, pp. 1448–1457.

[18] R. Wu, M. Feng, W. Guan, D. Wang, H. Lu, and E. Ding, “A mutual
learning method for salient object detection with intertwined multi-
supervision,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp.
8150–8159.

[19] H. Li, G. Li, B. Yang, G. Chen, L. Lin, and Y. Yu, “Depthwise nonlocal
module for fast salient object detection using a single thread,” IEEE
Transactions on Cybernetics, 2020.

[20] S. Chen, B. Wang, X. Tan, and X. Hu, “Embedding attention and residual
network for accurate salient object detection,” IEEE Trans. Cybernetics,
vol. 50, no. 5, pp. 2050–2062, 2020.

[21] F. Guo, W. Wang, J. Shen, L. Shao, J. Yang, D. Tao, and Y. Y. Tang,
“Video saliency detection using object proposals,” IEEE Transactions
on Cybernetics, vol. 48, no. 11, pp. 3159–3170, 2017.

[22] Y. Zhou, S. Huo, W. Xiang, C. Hou, and S.-Y. Kung, “Semi-supervised
salient object detection using a linear feedback control system model,”
IEEE Transactions on Cybernetics, vol. 49, no. 4, pp. 1173–1185, 2018.

[23] L. Wang, L. Wang, H. Lu, P. Zhang, and X. Ruan, “Saliency detection
with recurrent fully convolutional networks,” in Eur. Conf. Comput. Vis.,
2016, pp. 825–841.

[24] P. Zhang, D. Wang, H. Lu, H. Wang, and B. Yin, “Learning uncertain
convolutional features for accurate saliency detection,” in Int. Conf.
Comput. Vis., 2017, pp. 212–221.

[25] Z. Luo, A. K. Mishra, A. Achkar, J. A. Eichel, S. Li, and P.-M. Jodoin,
“Non-local deep features for salient object detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2017, pp. 6609–6617.

[26] P. Hu, B. Shuai, J. Liu, and G. Wang, “Deep level sets for salient object
detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2300–
2309.

[27] N. D. Bruce, C. Catton, and S. Janjic, “A deeper look at saliency: Feature
contrast, semantics, and beyond,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2016, pp. 516–524.

[28] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand,
“BASNet: Boundary-aware salient object detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019, pp. 7479–7489.

[29] M. Feng, H. Lu, and E. Ding, “Attentive feedback network for boundary-
aware salient object detection,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2019, pp. 1623–1632.

[30] S. Wang, S. Yang, M. Wang, and L. Jiao, “New contour cue-based
hybrid sparse learning for salient object detection,” IEEE Transactions
on Cybernetics, 2019.

[31] K. Yan, X. Wang, J. Kim, and D. Feng, “A new aggregation of DNN
sparse and dense labeling for saliency detection,” IEEE Transactions on
Cybernetics, 2020.

[32] H. Li, G. Li, and Y. Yu, “ROSA: Robust salient object detection against
adversarial attacks,” IEEE Transactions on Cybernetics, 2019.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2018, pp. 4510–4520.

[35] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet v2: Practical
guidelines for efficient cnn architecture design,” in Eur. Conf. Comput.
Vis., 2018, pp. 116–131.

[36] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2018, pp. 6848–6856.
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