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Abstract

This paper investigates the role of global context for crowd counting. Specifically, a pure
transformer is used to extract features with global information from overlapping image patches.
Inspired by classification, we add a context token to the input sequence, to facilitate information
exchange with tokens corresponding to image patches throughout transformer layers. Due to the
fact that transformers do not explicitly model the tried-and-true channel-wise interactions, we
propose a token-attention module (TAM) to recalibrate encoded features through channel-wise
attention informed by the context token. Beyond that, it is adopted to predict the total person
count of the image through regression-token module (RTM). Extensive experiments on various
datasets, including ShanghaiTech, UCF-QNRF, JHU-CROWD++ and NWPU, demonstrate that the
proposed context extraction techniques can significantly improve the performance over the baselines.
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1 Introduction

At first sight, counting the size of a crowd present
in an image is equivalent to the problem of
detecting and counting of person instances [1,
2]. Such direct approaches however have been
shown not to perform well, because generic
detectors suffer from the small instance size and
severe occlusions present in crowded regions [3,
4] – typically a person covers only a small
number of pixels, and only few body parts are
visible (often just the head) [5]. State-of-the-art
crowd counting approaches therefore rely on the
prediction of crowd density maps, a localized,
pixel-wise measure of person presence [3, 5–29].

† Corresponding authors.

To this end, underlying network architectures
need to integrate context across location and
scales [3, 11, 30]. This is crucial due to the vast
variety of possible appearances of a given crowd
density. In other words, the ability to integrate
a large context makes it possible to adapt the
density estimation to an expectation raised by
the given scene, beyond the tunnel vision of local
estimation. Geometry and semantics are two of
the main aspects of scene context [31, 32], that
can serve this goal for crowd counting [31, 33].
Unfortunately, even if we manage to model and
represent such knowledge, it is very cumbersome
to obtain, and therefore not practical for many
applications of image-based crowd counting. This
also reflects the setup of the most popular crowd
counting challenge datasets considered in this
paper [5, 7, 34, 35].
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On the bright side, even in the absence of such
direct knowledge, we can benefit from the recent
progress in geometric and semantic learning on
a conceptual level – by studying the inductive
biases. In fact, the development of computer vision
in the last decade demonstrated the possibility
to implicitly learn representations capturing rich
geometric [36] and semantic [37, 38] information
from a single image. Recently, the advantageous
nature of global interaction over convolutional
neural networks (CNNs) has been demonstrated
for both geometric features for monocular depth
prediction [39], as well as for semantic features in
segmentation [37, 40]. The aforementioned works
attribute the success of the transformer [41, 42] to
global receptive fields, which has been a bottleneck
in previous CNN-based approaches. Moreover,
CNNs by design apply the same operation on all
locations, rendering it a sub-optimal choice for
exploiting information about the geometric and
semantic composition of the scene.

As geometric and semantic understanding are
crucial aspects of scene context for the task of
crowd counting, we hypothesize that superior
capabilities of transformers on these aspects are
also indicative of a more suitable inductive bias
for crowd counting. To investigate our hypothesis,
we adapt the vision transformers [37, 42, 43] for
the task of crowd counting.

Unlike image classification [42], crowd
counting is a dense prediction task. Following
our previous discussion, the learning of crowd
counting is also predicated on the global context
of the image. To capture both spatial information
for dense prediction, as well as the necessary
scene context, we maintain both local tokens
(representing image patches) and a context token
(representing image context). We then introduce
a token attention module (TAM) to refine the
encoded features informed by the context token.
We further guide the learning of the context token
by using a regression token module (RTM), that
accommodates an auxiliary loss on the regression
of the total count of the crowd. Following [37],
the refined transformer output is then mapped
to the desired crowd density map using two
deconvolution layers. Please refer to Fig. 1 for an
illustration of the overall framework.

In particular, our proposed TAM is designed
to address the observation that the multi-head

self-attention (MHSA) in vision transformers
only models spatial interactions, while the
tried-and-true channel-wise interactions have also
been proved to be of vital effectiveness [44, 45].
To this end, TAM imprints the context token on
the local tokens by conditional recalibration of
feature channels, therefore explicitly modelling
channel-wise interdependencies. Current
widely-used methods to achieve this goal includes
SENet [44] and CBAM [45]. They use simple
aggregation technique such as global average
pooling or global maximum pooling on the input
features to obtain channel-wise statistics (global
abstraction), which are then used to capture
channel-wise dependencies. For transformers, we
propose a natural and elegant way to model
channel relationships by extending the input
sequence with a context token and introducing
the TAM to recalibrate local tokens through
channel-wise attention informed by the context
token. The additional attention across feature
channels further facilitates the learning of global
context.

We also adopt context token which interacts
with other patch tokens throughout the
transformers to regress the total crowd count
of the whole image. This is achieved by the
proposed RTM, containing a two-layer MLP.
On the one hand, the syzygy of TAM and RTM
forces the context token to collect and distribute
image-level count estimates from and to all local
tokens, leading to a better representation of
context token. On the other hand, it helps to
learn better underlying features for the task and
reduce overfitting within the network, similar to
auxiliary-task learning [46].

In summary, we provide another perspective
on density-supervised crowd counting, through
the lens of learning features with global context.
Specifically, we introduce a context token tasked
with the refinement of local feature tokens
through a novel framework of token-attention and
regression-token modules. Our framework thereby
addresses the shortcomings of CNNs with regards
to capturing global context for the problem
of crowd counting. We conduct experiments on
various popular datasets, including ShanghaiTech,
UCF-QNRF, JHU-CROWD++ and NWPU.
The experimental results demonstrate that the
proposed context extraction techniques can
significantly improve the performance over the
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baselines and thus open a new path for crowd
counting.

2 Related works

2.1 Crowd Counting

Most crowd counting methods are based on
convolutional neural networks (CNNs), which can
be divided into three categories: counting by
regression [47, 48], counting by detection [1, 2, 49],
and counting by estimating density maps [3, 5–
29, 50–52]. The regression-based methods directly
regress the total count of the crowd in the image,
while the location of the people is not considered.
Detection-based approaches first detect the people
and then count the number of detections.
However, those methods do not perform well in
many interesting cases, where detection is difficult
due to occlusions and high density of people. As
a consequence, the mainstream direction of crowd
counting is to estimate the density map of the
image and then sum over the density map to
obtain the total count. For this work, we also
follow the direction of estimating density map.
Different from existing methods, we target the
crowd counting problem from the perspective of
global information.

The methods [3, 6, 11] which exploit large
receptive field for crowd counting have been
proposed. The techniques include: using spatial
average pooling [3] or dilation convolution [11],
and increasing network depth [6]. However, the
receptive field is still limited, rather than global.
Technically, only local information is used. In
this work, we propose to use global information
for crowd counting, by taking advantage of
recent transformer technique. To the best of
our knowledge, there are only limited works [53]
adopting vision transformers to conduct crowd
counting. However, the method of [53] is concerned
with weakly supervised crowd counting in the
sense of only regressing the total count, where
dot annotations are not available. Its performance
therefore cannot compete with the mainstream
point-supervised crowd counting methods on most
standard benchmarks [5, 7, 35]. Differently, we
investigate point-supervised crowd counting using
vision transformers and show the effectiveness of
global context in crowd counting.

2.2 Vision Transformer

The transformer, relying on self-attention
mechanism [41], was first introduced in natural
language processing [41], and has been dominating
this area ever since. In general, a transformer
contains a MHSA module and a multi-layer
perceptron (MLP), to model the contextual
information within input sequences through
global interaction. Recently, pioneer works such
as ViT [42] and DETR [54] utilize transformers to
solve vision problems. Transformers have shown
to be effective in tasks of image classification [42],
object detection [54], and semantic/instance
segmentation [37]. However, the exploration of
transformers for crowd counting [53] has been
limited. In this paper, we demonstrate the
power of transformers in point-supervised crowd
counting setup, where persons are represented
with a dense map.

3 Method

3.1 Problem Definition

Given a training dataset of images {Ii}K ⊆
Rc×h×w and crowd density label maps {Di}K ⊆
Rh×w, our goal is to learn a neural network model
M : Rc×h×w → Rh×w, that estimates the crowd
density map D

′
=M(I) and therefore counts the

number of visible people ∥D′∥1 from an unseen
image I.

3.2 Transformer-based Crowd
Counting

Most crowd counting methods in the literature
that consider crowd counting as a dense
prediction task are based on CNNs [3, 11, 13].
Since CNN-based encoders can only exploit the
local information within the fix-sized window,
some approaches are proposed to increase the
receptive fields, by dilated convolutions [11] or
using deeper networks [15]. In this section, we
present our transformer-based approach for crowd
counting, which is designed to overcome this
limitation by explicitly modelling global context.
Our presentation follows the data flow of our
framework as depicted in Fig. 1.

Overlapping Split. In the seminal ViT [42],
the input image is split into non-overlapping
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Fig. 1: Network Overview. The input image is first split into overlapping patches. Then, those patches
go through tokens reduction block and main transformer to learn features with global information. To
abstract global information, context token (blue vector) is added to the input sequence before the main
transformer. The encoded features are processed by TAM and regression-token module (RTM). The small
decoder after TAM is not shown for simplicity.

patches, leading to the problem that the local
structure around the patches is destroyed. Instead,
we split the input into overlapping patches,
following [43]. The process of overlapping split
is similar to an convolution operation and the
patch size of k × k is similar to the kernel size.
Specifically, the input image I is first padded by
p pixels on each side. The overlapping patches are
obtained by moving the patch window (k × k)
across the whole image with stride s (s < k). Each
patch has k × k × c elements, which are flattened
to Rck2

. The length of patches is given by

N0 = h0 × w0, (1)

where h0 = ⌊h+2p−k
s +1⌋ and w0 = ⌊w+2p−k

s +1⌋.
After concatenating all patches together, image
tokens are obtained, denoted by Z0 ∈ RN0×ck2

.
Later, we process Z0 by the tokens reduction
block, followed by the main transformer.

Tokens Reduction. We first input Z0 to a
transformer layer and obtain Z1, formulated as

Z1 = MLP(MHSA(Z0)), (2)

where Z1 ∈ RN0×d, and d is the dimension of
query, key, and value. Since the sequence length
N0 is relatively large due to the overlapping split,
we reshape Z1 back to Rh0×w0×d and perform
overlapping split again to reduce the spatial size
by stride s. Let Z

′

1 be the obtained tokens with

size of RN1×dk2

, and N1 = h1 × w1, where h1 =
⌊h0+2p−k

s +1⌋ and w1 = ⌊w0+2p−k
s +1⌋. Following

[43], this process is repeated twice and we obtain

Z
′

2 ∈ RN2×dk2

, where N2 = h2×w2. The length of
sequence N2 is thereby reduced to a manageable
scale. Since the dependency among those pixels
around the original non-overlapping split (as in
ViT [42]) is well-modelled, we fix the length of
sequence as N = N2 and do not reduce it further,
in order to maintain both the representation
capability and efficiency. After projecting Z

′

2 to
T ∈ RN×d, we process T by deep-narrow ViT [42].

Context Token. Recall that we approach
crowd counting as a dense prediction problem,
and each patch token transforms local RGB input
to a local density map prediction. Therefore,
even though the patch tokens T are in
principle able to interact globally in ViT [42],
our mode of dense supervision renders each
token to be primarily concerned with its local
region. In order to foster global information
exchange without compromising capacity for local
features, we delegate the collection of global
context to a context token tcon. In contrast,
previous transformer-based approaches to dense
prediction [37] only employ local tokens without
explicitly modelling the global context. In our
framework, the context token is the key input for
the TAM as described in §3.3, which disseminates
the global context back to the local tokens. The
local tokens therefore remain dedicated to their
local predictions. In §3.4 we explain how to guide
the learning of context token through the RTM
module. But first, we give a brief description of
the main transformer of our framework.
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Main Transformer. The main transformer
follow the same architecture as ViT [42], but
have less channels in intermediate layers to reduce
redundancy within original ViT model. As laid
out above, we append the context token tcon
to the patch tokens T to facilitate global-local
interaction. Following [42], position embedding E
is also added. The main transformer is denoted as
follows:

T0 = [T ; tcon] + E, E ∈ R(N+1)×d,

T
′

i = MHSA(Ti−1) + Ti−1, i = 1, ..., l,

Ti = MLP(T
′

i ) + T
′

i , i = 1, ..., l.

(3)

Here, l is the number of layers in the main
transformer. Tl is the feature sequence from the
last layer of transformers. It has global receptive
fields which are effective for crowd counting task.
Since a context token is added in the beginning,
we split Tl as follows

Fp = Tl[: N ], Fc = Tl[N ], (4)

where Fp ∈ RN×d is the feature corresponding to
image patches, and Fc ∈ Rd is the feature vector
corresponding to context token tcon. To recover
spatial structure, Fp is reshaped to Rd×h2×w2 .
Fp is further refined by TAM to predict the
density map and Fc is used by the proposed
regression-token module (RTM) to predict the
overall count for the image .

3.3 Token-attention Module (TAM)

The task of the TAM is to refine the local feature
map Fp used to predict the crowd density map,
conditioned upon the context token feature Fc.
This will infuse the global context information into
the local density predictions. Before presenting
the details of TAM, we give a brief analysis of
the preceding transformer layers to motivate the
proposed mechanism.

Spatial and Channel Attention. Recall that
the token Tl is produced from Tl−1 by the last

transformer layer, which performs the operations

T
′

l = softmax(
Tl−1WQ(Tl−1WK)T

√
d

)Tl−1WV + Tl−1,

Tl = MLP(T
′

l ) + T
′

l ,

(5)

where Tl−1/T
′

l /Tl ∈ RN×d, and WQ/WK/WV ∈
Rd×d are the learnable parameters for generating
(query, key, value). For simplicity of notation,
MHSA is represented by a special case where a
single self-attention (SA) operation is performed.
We can see that a token T

′

l [i] (corresponding to
a specific image patch or the context token), is
generated by a weighted summation of tokens
Tl−1. Therefore, transformers are inherently
equipped with spatial attention mechanism which
pays more attention to the relevant spatial
regions (tokens). However, the feature channel
interdependencies are not explicitly modelled
in the transformer operations (5). Explicitly
modelling channel relationships, so that the
network has the capability to focus on important
feature channels, leads to enhanced features [44,
45]. This is also confirmed by our experiments:
while no improvements are obtained by adding
spatial attention, introducing channel attention
yields better predictions. To this end, we introduce
TAM as a mechanism to perform feature channel
attention.

Global Abstraction. Global abstraction
is used to provide cues for channel
interdependencies. In SE, global abstraction is
obtained by conducting global average pooling
across spatial dimensions on the input itself,
while CBAM [45] merges both global average
pooling and global maximum pooling. For
transformers, we propose a natural and elegant
approach to abstract global information, by
extending the input sequence with a context
token, as introduced above. Since the obtained
feature Fc from context token has a global
overview throughout transformer layers, we adopt
it to provide information on which channels
are important for predicting density map. The
comparison between SE and TAM is shown in
Fig. 2, where the sigmoid is omitted for simplicity.
The superiority of the proposed TAM over SE [44]
and CBAM [45] is validated in §4.3.
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Fig. 2: Comparison between SE block [44] and TAM. Different from SE block which obtains global
information from input features, TAM adopts context token feature to provide channel relations.

Fig. 3: The structure of RTM.

Token-adaptive Recalibration. To capture
channel-wise interactions, Fc is projected by an
MLP with ReLU activation, learning a weight
vector F

′

c which is used to re-weight the feature
across the channels. F

′

c is obtained by

F
′

c = sigmoid(MLP(Fc)). (6)

Here, F
′

c ∈ Rd and sigmoid function is used
to squeeze each element to a range of 0 and
1. We use a convolution layer to prepare Fp

for the re-weighting and obtain F
′

p. After the
recalibration, we add a skip connection [55] with
Fp to derive the final feature map Ff ∈ Rh2×w2×d,
like

Ff = Fp + F
′

p ⊗ F
′

c . (7)

Through the TAM, the network can increase
sensitivity to informative features which are
important for downstream processing.

3.4 Regression-token Module
(RTM)

Recall that the context token is used to collect
global context over the whole image. It has a
global overview of all image patches, through
exchanging information with feature vector of each

patch throughout all layers. Therefore, we adopt
Fc to predict the overall count of people for
the whole image. A two-layer MLP with ReLU
activation is used to predict the total count D̂,
given by

D̂ = MLP(Fc). (8)

The structure of RTM is shown in Fig. 3. We use
L1 loss to reduce the difference between D̂ and
ground-truth count, as follows,

Lr(D̂,D) = |D̂ − ∥D∥1|. (9)

Note that we only use this module during
training, the predicted count for an image
during test is obtained by summing over the
predicted density map D

′
(§3.5), following other

density-map based approaches [11, 29]. The
benefits of RTM are two-fold. First, it forces
to learn better context-token feature, which
provides better information on the importance
of each channel and enhance the final feature
map Ff . Guiding the network to count the crowd
through the context-token therefore encourages
information exchange between context and patch
tokens. In addition, it helps to learn better
underlying feature representations and reduce
over-fitting. This can be understood from a view of
auxiliary-task learning [46, 56], which has shown
to be effective in segmentation [38, 57].

3.5 Density Map Prediction and
Loss Functions

To predict the density map D
′
, the feature map

Ff is processed by a decoder containing two
convolutional layers. We supervise the density
map prediction using the distribution matching
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loss introduced by [29]. To avoid dimension
mismatch, the ground-truth D is resized to have
the same size asD

′
, i.e.,D ∈ Rh2×w2 . Specifically,

the losses for learning the density map is a
combination of counting loss, optimal transport
loss [58] and variation loss, denoted as,

Ld(D
′
,D) = |∥D

′
∥1 − ∥D∥1|+ LOT (D

′
,D)

+ LTV (D
′
,D),

(10)

where LOT is the optimal transport loss, and
LTV is the total variation loss. The first term
measures the difference of the total count between
the predicted density map and the ground-truth
binary mask. The second (optimal transport
loss) and third terms (variation loss) are used
to minimize the distribution difference between
D

′
and D by regarding the density map as

a probability distribution. Please refer to [29]
for more details. The total loss function for the
proposed method is given by,

L = Ld(D
′
,D) + λrLr(D̂,D), (11)

where λr is the weight for the regression loss Lr

from (9). The final predicted count for inference
is the summation over the predicted density map,
given by ∥D′∥1.

4 Experiments

We conduct extensive experiments on four
benchmark crowd counting datasets [5, 7, 34,
35] to validate the effectiveness of the proposed
approach. We begin this section by introducing
our experimental setting, followed by comparisons
with previous methods. Finally, we perform
ablation studies to examine the effectiveness of
different components of our model.

4.1 Experimental Setup

Implementation Details. The number of layers
l in the main transformer is set to 14. We use
the official T2T-ViT-14 model [43] pretrained
on ImageNet [61] for initialization. For data
augmentation, we adopt random cropping and
random horizontal flipping in all experiments. We
use the Adam optimizer [62], with learning rate
and weight decay as 1e-5 and 1e-4, respectively.
Following [37], we compute auxiliary losses at

transformer layers T5, T8, and T11, to provide
intermediate supervision during training while
only output from last layer is used for prediction.
Our method is implemented in the PyTorch
framework [63], and experiments are conducted on
a single NVIDIA Tesla GPU. We will release our
implementation for reproducibility.

Datasets. Experiments are conducted on
four challenging datasets: ShanghaiTech [7],
UCF-QNRF [5], JHU-CROWD++ [34] and
NWPU [35]. ShanghaiTech contains 1,198 images
with 330,165 annotations, and UCF-QNRF has
1,535 images with more than one million
counts. JHU-CROWD++ and NWPU are two
largest-scale and most challenging crowd counting
benchmarks. JHU-CROWD++ consists of 4,822
images from diverse scenes with more than 1.5
million dot annotations, and NWPU contains
5,109 images with more than two million
annotations. The results for the test set are
obtained from the evaluation server.

Evaluation Metrics. Following previous
works [3, 11, 29], we use mean average error
(MAE) and mean square error (MSE) to evaluate
the counting performance. For NWPU dataset, we
also use mean normalized absolute error (NAE) as
evaluation metric, following [29, 35].

4.2 Crowd Counting Results

Baseline. The baseline model is based on
the same transformers, also adopting loss
functions (11), without using TAM and
regression-token module (RTM).

Quantitative Comparisons. For
comparisons, we choose mainstream and popular
methods. They can be divided into three groups.
The VGG-based approaches include CSRNet [11],
ic-CNN [12], CAN [3], PACNN [16], Wan
et al. [19], PGCNet [21], BL [24], L2R [25],
ASNet [26], LibraNet [27], Yang et al. [59],
NoisyCC [28], DM-Count [29], MATT [60], and
MBTTBF [64]. The ResNet-based methods
include SFCN [15] and CG-DRCN [34].
Other CNN-based algorithms include Crowd
CNN [6], MCNN [7], CMTL [8], Switch
CNN [9], IG-CNN [10], CL-CNN [5], SANet [14],
TEDnet [17], ANF [18], CFF [20].

The comparisons with other methods on
various datasets are shown in Table 1, Table 2
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ShanghaiTech A ShanghaiTech B UCF-QNRF
Method Dot

MAE MSE MAE MSE MAE MSE

Crowd CNN [6] ✓ 181.8 277.7 32.0 49.8 - -
MCNN [7] ✓ 110.2 173.2 26.4 41.3 277 426
CMTL [8] ✓ 101.3 152.4 20.0 31.1 252 514
Switch CNN [9] ✓ 90.4 135.0 21.6 33.4 228 445
IG-CNN [10] ✓ 72.5 118.2 13.6 21.1 - -
CSRNet [11] ✓ 68.2 115.0 10.6 16.0 - -
ic-CNN [12] ✓ 68.5 116.2 10.7 16.0 - -
CL-CNN [5] ✓ - - - - 132 191
SANet [14] ✓ 67.0 104.5 8.4 13.6 - -
CAN [3] ✓ 62.3 100.0 7.8 12.2 107 183
SFCN [15] ✓ 64.8 107.5 7.6 13.0 102 171
PACNN [16] ✓ 62.4 102.0 7.6 11.8 - -
TEDnet [17] ✓ 64.2 109.1 8.2 12.8 113.0 188.0
ANF [18] ✓ 63.9 99.4 8.3 13.2 110 174
Wan et al. [19] ✓ 64.7 97.1 8.1 13.6 101 176
CFF [20] ✓ 65.2 109.4 7.2 12.2 - -
PGCNet [21] ✓ 57.0 86.0 8.8 13.7 - -
BL [24] ✓ 62.8 101.8 7.7 12.7 88.7 154.8
L2R [25] ✓ 73.6 112.0 13.7 21.4 124.0 196.0
ASNet [26] ✓ 57.7 90.1 - - 91.5 159.7
LibraNet [27] ✓ 55.9 97.1 7.3 11.3 88.1 143.7
Yang et al. [59] ✗ 104.6 145.2 12.3 21.2 - -
NoisyCC [28] ✓ 61.9 99.6 7.4 11.3 85.8 150.6
DM-Count [29] ✓ 59.7 95.7 7.4 11.8 85.6 148.3
MATT [60] ✗ 80.1 129.4 11.7 17.5 - -

Baseline ✓ 57.3 89.0 7.4 12.2 85.7 150.8
Ours ✓ 53.1 82.2 7.3 11.5 83.4 143.4

Table 1: Comparison with state-of-the-art methods on ShanghaiTech A [7], ShanghaiTech B [7], and
UCF-QNRF [5] datasets. The best and second best results are shown in red and blue, respectively.

Val Test
Method Publication Dot

MAE MSE MAE MSE

MCNN [7] CVPR16 ✓ 160.6 377.7 188.9 483.4
CMTL [8] AVSS17 ✓ 138.1 379.5 157.8 490.4
SANet [14] ECCV18 ✓ 82.1 272.6 91.1 320.4
CSRNet [11] CVPR18 ✓ 72.2 249.9 85.9 309.2
CAN [3] CVPR19 ✓ 89.5 239.3 100.1 314.0
SFCN [15] CVPR19 ✓ 62.9 247.5 77.5 297.6
BL [24] ICCV19 ✓ 59.3 229.2 75.0 299.9
MBTTBF [64] ICCV19 ✓ 73.8 256.8 81.8 299.1
CG-DRCN [34] PAMI20 ✓ 57.6 244.4 71.0 278.6

Baseline - ✓ 47.6 208.5 58.4 232.7
Ours - ✓ 46.5 198.6 54.8 208.5

Table 2: Comparison with state-of-the-art methods on the JHU-CROWD++ dataset [34].

and Table 3. For all datasets, the proposed
method performs favorably. It shows that our
approach is stable across different datasets.
The reported tables show that our baseline
is already comparable to the state-of-the-art
CNN-based methods. Notably, our full model

outperforms the baseline model in almost all
experiments, which validates the effectiveness
of the proposed modules. In all cases, our
method significantly outperforms DM-count [29],
although both methods use the same decoder
and loss functions to learn the density map.
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Val Test
Method Publication Dot

MAE MSE MAE MSE NAE

MCNN [7] CVPR16 ✓ 218.5 700.6 232.5 714.6 1.063
CSRNet [11] CVPR18 ✓ 104.8 433.4 121.3 387.8 0.604
CAN [3] CVPR19 ✓ 93.5 489.9 106.3 386.5 0.295
SFCN [15] CVPR19 ✓ 95.46 608.32 105.7 424.1 0.254
BL [24] ICCV19 ✓ 93.64 470.38 105.4 454.2 0.203
KDMG [65] PAMI20 ✓ - - 100.5 415.5 -
NoisyCC [28] NeurIPS20 ✓ - - 96.9 534.2 -
DM-Count[29] NeurIPS20 ✓ 70.5 357.6 88.4 388.6 0.169

Baseline - ✓ 69.0 314.0 86.6 359.1 0.172
Ours - ✓ 53.0 170.3 82.0 366.9 0.164

Table 3: Comparison with state-of-the-art crowd counting methods on the NWPU dataset [35].

For example, when compared with DM-count on
ShanghaiTech A [7], our model reduces MAE from
59.7 to 53.1, and MSE from 95.7 to 82.2. This
demonstrates the importance of global context
features for the task of crowd counting.

On two largest-scale and most challenging
benchmarks such as JHU-CROWD++ [34]
and NWPU [35], our approach significantly
outperforms the previous best results. More
specifically, our method improves BL [24], the best
method on JHU-CROWD++ test set, by reducing
MAE from 75.0 to 54.8 and MSE from 299.9 to
208.5. Similarily on NWPU dataset, our method
outperforms DM-count [29], the best method on
the NWPU test set, by a margin of 6.4 and
21.7 on MAE and MSE, respectively. Note that
the annotations for the NWPU test set are not
publicly available and the corresponding results
are obtained from the evaluation server.

Computing Time. Using an input image
with size 256 × 256 and a Nvidia RTX 6000
GPU, the computing time of our method is 21.47
milliseconds while the time for DM-count [29]
is 16.98 milliseconds. Note that DM-count is
currently state-of-the-art CNN-based method and
our method is based on transformer. Because of
the use of transformer to establish global relation
between features, our method consumes more time
compared to CNN-based method. Developping
more efficient crowd counting approach while
using global information will be our future work.

Visualizations. Qualitative results of the
predicted density maps are shown in Fig. 4.
Our method generates sharper density maps and
exhibits better localization ability, compared to
DM-count [29].

4.3 Ablation Study

Following previous works [3, 11, 26, 27],
we conduct ablation experiments on
ShanghaiTech A [7], to show the contributions of
the key components of our method.

TAM and RTM. Table 4a shows that
the token-attention module and regression-token
module provide complementary improvements
over baseline. Specifically, by adding TAM to the
baseline, we observe an improvement of 2.2 in
MAE and of 2.8 in MSE. The best results are
achieved by combining TAM with RTM, resulting
in an improvement of 4.2 MAE and 6.8 in MSE
over the baseline.

TAM vs. SE/CBAM. We also compare the
proposed TAM block with a SE block [44] and a
CBAM block [45]. The main difference between
TAM and SE/CBAM is that the attention weight
for TAM is obtained from context token, while
SE/CBAM use feature itself to generate attention
weight. As shown in Table 4a, TAM outperforms
SE/CBAM, demonstrating that context token
contains better information to recalibrate features
along channels. The result for CBAM which uses
both channel and spatial attention shows that
additionally adding spatial attention does not help
feature learning, since transformers are naturally
equipped with spatial attention, as hypothesized
in §3.3.

Sensitivity Analysis. Table 4b shows
the results when varying λr controlling the
contribution of Lr in Equation (11). We observe
that our network is very robust to the choice of
the λr parameter.
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Fig. 4: Density Map Visualization. We compare the ground-truth density map, predicted density
map from DM-count [29] and the proposed method. Our approach produces better density map for both
dense and sparse regions, leading to more accurate count predictions.

Method MAE MSE

Baseline 57.3 89.0
Baseline+SE [44] 55.9 87.7
Baseline+CBAM [45] 56.2 90.0
Baseline+TAM 55.1 86.2
Baseline+SE+RTM [44] 54.6 84.2
Baseline+TAM+RTM 53.1 82.2

(a)

Method λr MAE MSE

Ours

0.01 53.2 83.6
0.1 53.1 82.2
0.2 53.2 82.4
0.5 53.3 82.4
1.0 54.0 82.6

(b)

Table 4: Ablation study on (a) key components of our method and (b) λr on ShanghaiTech A.

4.4 Failure Cases and Limitation

Failure Cases. While our method achieves
promising results on several datasets, there are
cases where it does not perform well. We showed
failure cases in Fig. 5. When the input images
have low contrast or low quality, which do not
frequently appear in the training set, our method
does not predict the similar people count as the
ground truth.

Limitation. This paper aims at exploiting
the effect of global context in crowd counting.
Although we have achieved this goal by
demonstrating the effectiveness of the proposed
context extraction techniques, we do not explore

how to incorporate our techniques into existing
state-of-the-art counting methods [27–29, 60] for
performance boosting. We leave this as the
future work as this is totally about engineering.
Moreover, we find that the improvement of our
context techniques on large datasets [34, 35]
is much more significant than that on small
datasets [5, 7]. This may be a platitude that
deep learning needs large-scale data to evaluate its
real performance. Hence, we suggest researchers
paying more attention to recent large-scale
datasets [34, 35] in the future.
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Fig. 5: Failure Cases. The failure cases are caused
by the low contrast or low quality of the input
images.

5 Conclusion

In this paper, we study the value of global
context information in crowd counting with
point supervision. We build a strong baseline
using transformers to encode features with global
receptive fields. Based on that, we proposed
two novel modules: token-attention module and
regression-token module. Extensive experiments
are conducted to validate the effectiveness of
the proposed techniques. Our context techniques
achieve significant improvement on ShanghaiTech
[7], UCF-QNRF [5], JHU-CROWD++ [34], and
NWPU [35] datasets. Therefore, we conclude that
facilitating the representation of global context
significantly benefits crowd counting.
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