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Abstract Semantic edge detection (SED), which aims

at jointly extracting edges as well as their category

information, has far-reaching applications in domains

such as semantic segmentation, object proposal gener-

ation, and object recognition. SED naturally requires

achieving two distinct supervision targets: locating fine

detailed edges and identifying high-level semantics. Our

motivation comes from the hypothesis that such dis-

tinct targets prevent state-of-the-art SED methods from

effectively using deep supervision to improve results. To

this end, we propose a novel fully convolutional neural

network using diverse deep supervision (DDS) within a

multi-task framework where bottom layers aim at gen-

erating category-agnostic edges, while top layers are re-

sponsible for the detection of category-aware semantic

edges. To overcome the hypothesized supervision chal-

lenge, a novel information converter unit is introduced,

whose effectiveness has been extensively evaluated on

SBD and Cityscapes datasets.

Keywords Semantic edge detection, diverse deep

supervision, information converter

1 Introduction

The aim of classical edge detection is to detect edges

and object boundaries in natural images. It is category-

agnostic, in that object categories need not be recog-

nized. Classical edge detection can be viewed as a pixel-
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wise binary classification problem, whose objective is to

classify each pixel as belonging to either the class in-

dicating an edge, or the class indicating a non-edge. In

this paper, we consider more practical scenarios of se-

mantic edge detection (SED), which jointly achieves

edge detection and edge category recognition within an

image. SED (Bertasius et al. 2015b; Hariharan et al.

2011; Maninis et al. 2017; Yu et al. 2017) is an active

computer vision research topic due to its wide-ranging

vision applications, including object proposal genera-

tion (Bertasius et al. 2015b), occlusion and depth rea-

soning (Amer et al. 2015; Bian et al. 2021), 3D recon-

struction (Shan et al. 2014), object detection (Ferrari

et al. 2008, 2010), and image-based localization (Rama-

lingam et al. 2010).

In the past several years, deep convolutional neu-

ral networks (DCNNs) reign undisputed as the new

de-facto method for category-agnostic edge detection

(Hu et al. 2018; Liu et al. 2019, 2017; Xie & Tu 2015,

2017), where near human-level performance has been

achieved. However, deep learning for category-aware

SED, which jointly detects visually salient edges as well

as recognizing their categories, has not yet witnessed

such vast popularity. Hariharan et al. (2011) first com-

bined generic object detectors with bottom-up edges to

recognize semantic edges. Yang et al. (2016) proposed

a fully convolutional encoder-decoder network to de-

tect object contours but without recognizing specific

categories. More recently, CASENet (Yu et al. 2017)

introduces a skip-layer structure to enrich the top-layer

category-aware edge activation with bottom-layer fea-

tures, improving previous state-of-the-art methods with

a significant margin. However, CASENet imposes su-

pervision only at the Side-5 and final fused classifica-

tion and uses feature maps from Side-1 ∼ Side-3 with-

out deep supervision. After unsuccessfully trying vari-

ous ways of adding deep supervision, CASENet claims

that imposing deep supervision at bottom network sides

(Side-1 ∼ Side-4) is unnecessary. This conclusion has
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Fig. 1 An example of our DDS algorithm. (a) shows the orig-
inal image from the SBD dataset (Hariharan et al. 2011).
(b)-(c) show its semantic edge map and corresponding color
codes. (d)-(g) display category-agnostic edges from Side-1 ∼
Side-4. (h)-(i) show semantic edges of Side-5 and DDS (DDS-
R) output, respectively.

also been widely accepted by recent SED works (Acuna

et al. 2019; Hu et al. 2019; Yu et al. 2018).

SED naturally requires achieving two distinct su-

pervision targets: i) locating fine detailed edges by cap-

turing discontinuity among image regions, mainly using

low-level features; and ii) identifying abstracted high-

level semantics by summarizing different appearance

variations of the target categories. While it may be in-

tuitive and straightforward to impose category-agnostic

edge supervision at bottom network sides for low-level

edge details and impose category-aware edge supervi-

sion at top sides for semantic classification, directly

doing this as in CASENet (Yu et al. 2017) even de-

grades the performance compared with directly learning

semantic edges without deep supervision or category-

agnostic edge guidance. We hypothesize that distinct

supervision targets prevent state-of-the-art SED meth-

ods (Acuna et al. 2019; Hu et al. 2019; Yu et al. 2017,

2018) from successfully applying deep supervision (Lee

et al. 2015). Specifically, we observe that the success

stories of deep supervision, including image categoriza-

tion (Szegedy et al. 2015), object detection (Lin et al.

2020), visual tracking (Wang et al. 2015), and category-

agnostic edge detection (Liu et al. 2017; Xie & Tu 2017),

usually adopt the same type of supervision for all net-

work sides. In contrast, CASENet directly imposes dis-

tinct supervision targets to bottom and top network

sides. Therefore, we consider achieving such distinct su-

pervision using some buffers, i.e., in an indirect manner,

to prevent the backbone network from being directly in-

fluenced by distinct targets.

In this paper, we propose a diverse deep super-

vision (DDS) method, which employs deep supervi-

sion with different loss functions for high-level and low-

level feature learning, as shown in Fig. 2(b). To this

end, we propose an information converter unit to

change the backbone DCNN features into different rep-

resentations, for training category-agnostic or seman-

tic edges, respectively. Hence, information converters

act as buffers, making distinct supervision targets in-

directly affect top and bottom convolution (i.e., conv
layers. The existence of information converters sepa-

rates the information content in conv layers by assign-

ing unique sets of parameters and imposing separate

losses to each network side. This makes a single back-

bone network be effectively trained end-to-end towards

different targets. An example of DDS is shown in Fig. 1.

The bottom sides of the neural network help Side-5 to

find fine details, thus making the final fused seman-

tic edges (Fig. 1(i)) smoother than those coming from

Side-5 (Fig. 1(h)).

In summary, our main contributions include:

– We analyze the reason why state-of-the-art SED

methods cannot apply deep supervision to improve

results, i.e., due to the distinct supervision targets

in SED (Section 3).

– We propose a new SED method, called diverse deep

supervision (DDS), which uses information convert-

ers to separate the information content in backbone

conv layers and thus achieve distinct supervision in

an indirect manner (Section 4).

– We provide detailed ablation studies to further un-

derstand the proposed method (Section 5.2).

We extensively evaluate DDS on SBD (Hariharan et al.

2011) and Cityscapes (Cordts et al. 2016) datasets.

DDS achieves state-of-the-art performance, demonstrat-

ing the reasonability of our analyses and thus opening

up a new path for future SED research.

2 Related Work

An exhaustive review of the abundant literature on this

topic is out of the scope of this paper. Instead, we first

summarize the most important threads of research to

solve the problem of classical category-agnostic edge

detection, followed by the discussions of deep learning-

based approaches, semantic edge detection (SED), and

the technique of deep supervision.

Classical category-agnostic edge detection. Edge

detection is conventionally solved by designing vari-

ous filters (e.g., Sobel (Sobel 1970) and Canny (Canny

1986)) or complex models (Mafi et al. 2018; Shui &

Wang 2017) to detect pixels with highest gradients in

their local neighborhoods (Hardie & Boncelet 1995; Hen-

stock & Chelberg 1996; Trahanias & Venetsanopou-

los 1993). To the best of our knowledge, Konishi et
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al. (2003) proposed the first data-driven edge detec-

tor in which, unlike previous model based approaches,

edge detection was posed as statistical inferences. Pb

features consisting of brightness, color and texture are

used in (Martin et al. 2004) to obtain the posterior

probability of each boundary point. Pb is further ex-

tended to gPb (Arbeláez et al. 2011) by computing lo-

cal cues from multi-scale and globalizing them through

spectral clustering. Sketch tokens are learned from hand-

drawn sketches for contour detection (Lim et al. 2013),

while random decision forests are employed in (Dollár

& Zitnick 2015) to learn the local structure of edge

patches, delivering competitive results among non-deep-

learning approaches.

Deep category-agnostic edge detection. The num-

ber of success stories of machine learning has seen an

all-time rise across many computer vision tasks recently.

The unifying idea is deep learning which utilizes neural

networks with many hidden layers aimed at learning

complex feature representations from raw data (Chan

et al. 2015; Liu et al. 2018; Tang et al. 2017). Motivated

by this, deep learning based methods have made vast

inroads into edge detection as well (Deng et al. 2018;

Wang et al. 2019; Yang et al. 2017). Ganin et al. (2014)

applied deep neural network for edge detection using

a dictionary learning and nearest neighbor algorithm.

DeepEdge (Bertasius et al. 2015a) first extracts can-

didate contour points and then classifies these candi-

dates. HFL (Bertasius et al. 2015b) uses SE (Dollár

& Zitnick 2015) to generate candidate edge points in

contrast to Canny (Canny 1986) used in DeepEdge.

Compared with DeepEdge which has to process input

patches for every candidate point, HFL turns out to

be more computationally feasible as the input image

is only fed into the network once. DeepContour (Shen

et al. 2015) partitions edge data into subclasses and

fits each subclass using different model parameters. Xie

et al. (2015; 2017) leveraged deeply-supervised nets to

build a fully convolutional network for image-to-image

prediction. Their deep model, known as HED, fuses

the information from the bottom and top conv lay-

ers. Kokkinos (2016) proposed some training strategies

to retrain HED. Liu et al. (2019; 2017) introduced the

first real-time edge detector, which achieves higher F-

measure scores than average human annotators on the

popular BSDS500 dataset (Arbeláez et al. 2011).

Semantic edge detection. By virtue of their strong

capacity for semantic representation learning, DCNNs

based edge detectors tend to generate high responses

at object boundary locations, e.g., Fig. 1 (d)-(g). This

has inspired research on simultaneously detecting edge

pixels and classifying them based on associations with

one or more object categories. This so-called “category-

aware” edge detection is highly beneficial to a wide

range of vision tasks including object recognition, stereo

vision, semantic segmentation, and object proposal gen-

eration.

Hariharan et al. (2011) proposed the first principled

way of combining generic object detectors with bottom-

up contours to detect semantic edges. Yang et al. (2016)

proposed a fully convolutional encoder-decoder network

for object contour detection. HFL (Bertasius et al. 2015b)

produces category-agnostic binary edges and assigns

class labels to all boundary points using deep semantic

segmentation networks. Maninis et al. (2017) coupled

their convolutional oriented boundaries (COB) with se-

mantic segmentation generated by dilated convolutions

(Yu & Koltun 2016) to obtain semantic edges. A weakly

supervised learning strategy is introduced in (Khoreva

et al. 2016), where bounding box annotations alone

are sufficient to produce high-quality object boundaries

without any object-specific annotations. Gated-SCNN

(Takikawa et al. 2019) converts the semantic edge rep-

resentation from different ResNet layers to a represen-

tation suitable for segmentation, improving semantic

segmentation substantially.

Yu et al. (2017) proposed a novel network, CASENet,

which has pushed SED performance to a new state-of-

the-art. In their architecture, low-level features are only

used to augment top classifications. After several failed

experiments, they reported that imposing deep super-

vision at bottom sides is unnecessary for SED. More

recently, Yu et al. (2018) introduced a new training ap-

proach, SEAL, to train CASENet (Yu et al. 2017). This

approach can simultaneously align ground-truth edges

and learn semantic edge detectors. However, the train-

ing of SEAL is very time-consuming due to the heavy

CPU computation load. For example, it needs over 16

days to train CASENet on the SBD dataset (Hariharan

et al. 2011), despite that we have used a powerful CPU

(Intel Xeon(R) CPU E5-2683 v3 @ 2.00GHz × 56). Hu

et al. (2019) proposed a novel dynamic feature fusion

(DFF) strategy to assign different fusion weights for

different input images and locations adptively in the fu-

sion of multi-scale DCNN features. Acuna et al. (2019)

focused on semantic thinning edge alignment learning

(STEAL). They presented a simple new layer and loss

to train CASENet (Yu et al. 2017), so that they can

learn sharp and precise semantic boundaries. However,

all above methods give up applying deep supervision to

bottom layers due to the distinct supervision targets in

SED. In this work, we aim to solve this problem, so our

method is compatible with previous methods, includ-

ing SEAL (Yu et al. 2018), DFF (Hu et al. 2019), and

STEAL (Acuna et al. 2019).

Deep supervision. Deep supervision has been demon-

strated to be effective in many vision and learning tasks

such as image classification (Lee et al. 2015; Szegedy

et al. 2015), object detection (Lin et al. 2017, 2020;

Liu et al. 2016), visual tracking (Wang et al. 2015),

category-agnostic edge detection (Liu et al. 2017; Xie
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& Tu 2017), salient object detection (Hou et al. 2019),

and so on. Theoretically, the bottom layers of deep net-

works can learn discriminative features so that classifi-

cation/regression at top layers is easier. In practice, one

can explicitly influence the hidden layer weight/filter

update process to favor highly discriminative feature

maps using deep supervision. However, traditional deep

supervision usually adopts the same type of supervi-

sion at all layers, so it may be suboptimal for SED to

directly apply distinct supervision of category-agnostic

and category-aware edges to bottom and top network

sides, respectively. In the following sections, we will first

analyze the problem of distinct supervision targets of

SED and then introduce a new semantic edge detector

with successful diverse deep supervision.

3 Distinct Supervision Targets in SED

Before expounding the proposed method, we first an-

alyze the problem caused by the distinct supervision

targets of SED.

3.1 A Typical Deep Model for SED

To introduce previous attempts for using deep super-

vision in SED, without loss of generality, we take a

typical deep model as an example, i.e., CASENet (Yu

et al. 2017). As shown in Fig. 2(a), this typical model

is built on the well-known backbone network of ResNet

(He et al. 2016). It connects a 1 × 1 conv layer after

each of Side-1 ∼ Side-3 to produce a single-channel fea-

ture map F (m). The top Side-5 is connected to a 1× 1

conv layer to output K-channel class activation map

A(5) = {A(5)
1 , A

(5)
2 , · · · , A(5)

K }, where K is the number

of categories. Then, the shared concatenation replicates

bottom features F (m) to separately concatenate each

channel of the class activation map:

F f = {F (1), F (2), F (3), A
(5)
1 , · · · , F (1), F (2), F (3), A

(5)
K }.

(1)

Next, a K-grouped 1 × 1 conv is performed on F f

to generate a semantic edge map with K channels, in

which the k-th channel represents the edge map for the

k-th category. Other SED models (Hu et al. 2019; Yu

et al. 2018) have similar network designs.

3.2 Discussion

Previous SED models (Bertasius et al. 2015b; Hu et al.

2019; Yu et al. 2017, 2018) only impose supervision on

Side-5 and the final fused activation. In CASENet, the

authors have tried several deeply supervised architec-

tures. They first separately used all of Side-1 ∼ Side-5

for SED, with each side connected with a semantic clas-

sification loss. The evaluation results are even worse

than the basic architecture that directly applies 1 × 1

convolution at Side-5 to obtain semantic edges. It is

widely accepted that the bottom layers of DCNNs con-

tain low-level, less-semantic features such as local edges,

which are less effective for semantic classification be-

cause semantic category recognition needs abstracted

high-level features that mainly appear in the top layers

of neural networks. Thus, they would obtain poor clas-

sification results at bottom sides. Unsurprisingly, sim-

ply connecting each low-level feature layer and high-

level feature layer with a classification loss function to

achieve deep supervision for SED would result in a clear

performance drop.

Yu et al. (2017) also attempted to impose deep su-

pervision of binary edges at Side-1∼ Side-3 in CASENet

but observed divergence in the semantic classification

at Side-5. Here, we provide an intuitive and reason-

able explanation for this phenomenon. With the top

supervision of semantic edges, the top layers of the

network will be supervised to learn abstracted high-

level semantics that can summarize different appear-

ance variations of object categories. Since bottom layers

are the bases of top layers for the representation power

of DCNNs, bottom layers will be supervised to serve

top layers for obtaining high-level semantics through

back propagation. Conversely, with bottom supervision

of category-agnostic edges, bottom layers are taught

to focus on distinction between edges and non-edges,

rather than visual representations for semantic classifi-

cation. Hence, bottom layers have two conflict supervi-

sion targets. Compared to traditional deep supervision

applications that usually adopt the same type of super-

vision, we believe that such distinct supervision targets

of SED lead to the failure of previous attempts to apply
deep supervision for SED. Our motivation of this work

comes from this hypothesis by trying to resolve such

distinct supervision targets.

Note that Side-4 is not used in CASENet. We think

that it is a naive way to alleviate the supervision con-

flicts by regarding the whole res4 block as a buffer unit

between bottom and top sides. Indeed, when adding

Side-4 to CASENet (see Section 5.2), the new model

(CASENet+S4 ) achieves a 70.9% mean F-measure, com-

pared to 71.4% of original CASENet. This suggests

that our hypothesis about the buffer function of res4

block may be reasonable. Moreover, the classical 1× 1

conv layer after each side (Xie & Tu 2017; Yu et al.

2017) is too weak to buffer the conflicts. We therefore

propose an information converter unit to try to sepa-

rate the information content in the backbone layers by

assigning unique sets of parameters and imposing sep-

arate losses to each network side. In this way, we tackle

the distinct supervision targets of SED in an indirect

manner, rather than the previous direct manner.
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(a) CASENet
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Fig. 2 A comparison between two SED models: CASENet (Yu et al. 2017) and our DDS. CASENet only adds top supervision
on the Side-5 activation, and the authors claimed that deep supervision was not necessary in their architecture. However, our
proposed DDS network adds deep supervision at all network sides. Note that information converters are crucial for resolving
the distinct supervision targets of category-agnostic and category-aware edges.

4 Methodology

Intuitively, by employing different but “appropriate”

ground truths for bottom and top sides, the learned

intermediate representations of the different levels may

contain complementary information. However, directly

imposing deep supervision does not seem to be benefi-

cial. In this section, we propose a new network archi-

tecture for the complementary learning of bottom and

top sides for SED.

4.1 Diverse Deep Supervision

Based on the above discussion, we hypothesize that the

bottom sides of neural networks may not be directly

beneficial to SED. However, we still believe that bot-

tom sides encode fine details complementary to the top

side (Side-5). With appropriate architecture re-design,

maybe they can be used for category-agnostic edge de-

tection to improve the localization accuracy of semantic

edges generated by the top side. To this end, we design a

novel information converter to assist low-level feature

learning, making it consistent with high-level feature

learning. This is essential as this enables bottom lay-

ers to learn find-grained details and serve top layers to

favor highly discriminative features simultaneously.

Our proposed network architecture is presented in

Fig. 2(b). We follow CASENet to use ResNet (He et al.

2016) as our backbone network. After each information

converter (Section 4.2) in Side-1 ∼ Side-4, we connect

a 1× 1 conv layer with a single output channel to pro-

duce an edge response map. These predicted maps are

then upsampled to the original image size using bilin-

ear interpolation. These side-outputs are supervised by

binary category-agnostic edges. We perform K-channel

1 × 1 convolution on Side-5 to obtain semantic edges,

where each channel represents the binary edge map of

one category. We adopt the same upsampling opera-

tion as for Side-1 ∼ Side-4. Semantic edges are used to

supervise the training of Side-5.

We denote the produced binary edge maps from

Side-1 ∼ Side-4 as E = {E(1), E(2), E(3), E(4)}. The

semantic edge map from Side-5 is still represented by

A(5). A shared concatenation is then performed to ob-

tain the stacked edge activation map:

Ef = {E,A(5)
1 , E,A

(5)
2 , E,A

(5)
3 , · · · , E,A(5)

K }. (2)

Note that Ef is a stacked edge activation map, while F f

in CASENet is a stacked feature map. Finally, we apply
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Fig. 3 Schematic of our information converter unit (illus-
trated in the orange box in Fig. 2).

K-grouped 1 × 1 convolution on Ef to generate the

fused semantic edges. The fused edges are supervised

by the ground truth of the semantic edges. As shown in

HED (Xie & Tu 2017), the 1 × 1 convolution can fuse

the edges from bottom and top sides well.

4.2 Information Converter

From the above analyses, the core for improving SED

is the existence of the information converter. In this

paper, we try a simple design for information converter

to validate our hypothesis. Recently, residual networks

have been proved to be easier to optimize than plain

networks (He et al. 2016). The residual learning opera-

tion is embodied by a shortcut connection and element-

wise addition. We describe a residual conv block in

Fig. 3, which consists of two alternatively connected

ReLU and conv layers, and the output of the first ReLU

layer is added to the output of the last conv layer. Our

proposed information converter combines two residual

modules and is connected to each side of the DDS net-

work to transform the learned representation into the

proper form. This operation is expected to avoid the

conflicts caused by the discrepancy in different losses.

The top supervision of semantic edges will guide

top layers in learning semantic features, while the bot-

tom supervision of category-agnostic edges will guide

bottom layers in learning category-agnostic features.

Hence, bottom layers would have two distinct super-

vision through back propagation if the distinct super-

vision is directly imposed as discussed in Section 3.

Our information converters can separate the informa-

tion content in the backbone layers by assigning unique

sets of parameters and imposing separate losses to each

network side, playing a buffering role. In this way, the

distinct supervision targets are imposed to the back-

bone network in an indirect manner, rather than the

previous direct manner (Bertasius et al. 2015b; Hu et al.

2019; Yu et al. 2017, 2018). Note that this paper mainly

claims the importance of the existence of the infor-

mation converter, not its specific format, so we only

adopt a simple design. In the experimental part, we

will demonstrate different designs for the information

converter achieve similar performance.

Our proposed network can successfully combine the

fine details from bottom sides and the semantic infor-

mation from top sides. Our experimental results demon-

strate that this method solves the problem of conflicts

caused by diverse deep supervision. Unlike CASENet,

our semantic classification at Side-5 can be well op-

timized without any divergence. The produced binary

edges from bottom sides help Side-5 make up fine de-

tails. Thus, the final fused semantic edges can achieve

better localization quality.

We use binary edges of single pixel width to super-

vise Side-1 ∼ Side-4 and thick semantic boundaries to

supervise Side-5 and the final fused edges. One pixel is

viewed as a binary edge if it belongs to the semantic

boundaries of any category. We obtain thick semantic

boundaries by seeking the difference between a pixel

and its neighbors in ground-truth semantic segmenta-

tion, as in CASENet (Yu et al. 2017). A pixel with label

k is regarded as a boundary of class k if at least one

neighbor with a label k′ (k′ 6= k) exists.

4.3 Multi-task Loss

Two different loss functions, which represent category-

agnostic and semantic edge detection losses, respec-

tively, are employed in our multi-task learning frame-

work. We denote all layer parameters in the network

as W . Suppose an image I has a corresponding binary

edge map Y = {yi : i = 1, 2, · · · , |I|}. The reweighted

sigmoid cross-entropy loss function for Side-1 ∼ Side-4

can be formulated as

L
(m)
side(W ) =−

∑
i∈I

[β · (1− yi) · log(1− P (E
(m)
i ;W ))

+ (1− β) · yi · log(P (E
(m)
i ;W ))],

(m = 1, · · · , 4),

(3)

where we have β = |Y +|/|Y | and 1 − β = |Y −|/|Y |.
Y + and Y − represent edge and non-edge ground-truth

label sets, respectively. E
(m)
i is the produced activation

value at pixel i for the m-th side. P (·) is the standard

sigmoid function.

For an image I, suppose the semantic ground-truth

label is {Ȳ 1, Ȳ 2, · · · , Ȳ K}, in which Ȳ k = {ȳki : i =

1, 2, · · · , |I|} is the binary edge map for the k-th cate-

gory. Note that each pixel may belong to the boundaries

of multiple categories. We define the reweighted multi-

label loss for Side-5 as

L
(5)
side(W ) =−

∑
k

∑
i∈I

[β · (1− ȳki ) · log(1− P (A
(5)
k,i ;W ))

+ (1− β) · ȳki · log(P (A
(5)
k,i ;W ))],

(4)
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in which A
(5)
k,i is the Side-5’s activation value for the k-

th category at pixel i. The loss of the fused semantic

activation map is denoted as Lfuse(W ), which can be

similarly defined as

Lfuse(W ) =−
∑
k

∑
i∈I

[β · (1− ȳki ) · log(1− P (Af
k,i;W ))

+ (1− β) · ȳki · log(P (Af
k,i;W ))],

(5)

where Af is the final fused semantic edge map. The

total loss is formulated as

L(W ) =
∑

m=1,··· ,5
L
(m)
side(W ) + Lfuse(W ). (6)

Using this total loss function, we can optimize all pa-

rameters in an end-to-end way. We denote DDS trained

using the reweighted loss L(W ) as DDS-R.

Recently, Yu et al. (2018) proposed to simultane-

ously align and learn semantic edges. They found that

the unweighted (regular) sigmoid cross-entropy loss per-

formed better than reweighted loss with their alignment

training strategy. Due to the heavy computational load

on the CPU, their approach was very time-consuming

(over 16 days for SBD dataset (Hariharan et al. 2011)

with 28 CPU kernels and an NVIDIA TITAN Xp GPU)

to train a network. We use their method (SEAL) to

align ground-truth edges only once prior to training and

apply unweighted sigmoid cross-entropy loss to train

the aligned edges. The loss function for Side-1 ∼ Side-4

can thus be formulated as

L′
(m)
side(W ) =−

∑
i∈I

[(1− yi) · log(1− P (E
(m)
i ;W ))

+ yi · log(P (E
(m)
i ;W ))],

(m = 1, · · · , 4).

(7)

The unweighted multi-label loss for Side-5 is

L′
(5)
side(W ) =−

∑
k

∑
i∈I

[(1− ȳki ) · log(1− P (A
(5)
k,i ;W ))

+ ȳki · log(P (A
(5)
k,i ;W ))].

(8)

L′fuse(W ) can be similarly defined as

L′fuse(W ) =−
∑
k

∑
i∈I

[(1− ȳki ) · log(1− P (Af
k,i;W ))

+ ȳki · log(P (Af
k,i;W ))].

(9)

The total loss is the sum across all sides:

L′(W ) =
∑

m=1,··· ,5
L′

(m)
side(W ) + L′fuse(W ). (10)

We denote DDS trained using the unweighted loss L′(W )

as DDS-U.

4.4 Implementation Details

We implement our method using the well-known deep

learning framework of Caffe (Jia et al. 2014). The pro-

posed network is built on ResNet (He et al. 2016). We

follow CASENet (Yu et al. 2017) to change the strides

of the first and fifth convolution blocks from 2 to 1, so

that the output scales of five convolution blocks are 1,

1/2, 1/4, 1/8, and 1/8 compared to the input image,

respectively. The atrous algorithm is used to keep the

receptive field sizes the same as original ResNet. Specif-

ically, from the second convolution block to the fourth,

we use dilated convolutions with a dilation rate of 2;

for the fifth block, we use a dilation rate of 4. We also

follow CASENet to pre-train the convolution blocks on

the COCO dataset (Lin et al. 2014).

The network is optimized with stochastic gradient

descent (SGD). Each SGD iteration chooses 10 images

at uniformly random and crops a 352× 352 patch from

each of them. The weight decay and momentum are set

to 0.0005 and 0.9, respectively. We use the learning rate

policy of “poly”, where the current learning rate equals

the base one multiplying (1−curr iter/max iter)power.

The parameter of power is set to 0.9. We run 25k/80k

iterations (max iter) of SGD for SBD (Hariharan et al.

2011) and Cityscapes (Cordts et al. 2016), respectively.

For DDS-R training, the base learning rate is set to

5e-7/2.5e-7 for SBD and Cityscapes, respectively. For

DDS-U training, the loss at the beginning of training

is very large. Therefore, for both SBD and Cityscapes,

we first pre-train the network with a fixed learning rate

of 1e-8 for 3k iterations and then use the base learning

rate of 1e-7 to continue training with the same settings

as described above. The upsampling operation is imple-

mented with deconvolution layers by fixing the param-

eters to perform bilinear interpolation. All experiments

are performed using an NVIDIA TITAN Xp GPU.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate our method on the SBD (Har-

iharan et al. 2011) and Cityscapes (Cordts et al. 2016)

datasets. SBD (Hariharan et al. 2011) comprises 11,355

images and corresponding labeled semantic edge maps

for 20 object classes. It is divided into 8498 training and

2857 testing images. We follow (Yu et al. 2017) to use

the training set to train our network and the test set

for evaluation. The Cityscapes dataset (Cordts et al.

2016) is a large-scale semantic segmentation dataset

with stereo video sequences recorded in street scenarios

from 50 different cities. It consists of 5000 images di-

vided into 2975 training, 500 validation, and 1525 test-

ing images. The ground truth of the test set has not

been published because it is an online competition for
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Table 1 ODS F-measure (%) of DDS-R/DDS-U and ablation methods on the SBD dataset (Hariharan et al. 2011) using the
original benchmark protocol in (Hariharan et al. 2011). The best performance of each column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

Softmax 74.0 64.1 64.8 52.5 52.1 73.2 68.1 73.2 43.1 56.2 37.3 67.4 68.4 67.6 76.7 42.7 64.3 37.5 64.6 56.3 60.2
Basic 82.5 74.2 80.2 62.3 68.0 80.8 74.3 82.9 52.9 73.1 46.1 79.6 78.9 76.0 80.4 52.4 75.4 48.6 75.8 68.0 70.6
DSN 81.6 75.6 78.4 61.3 67.6 82.3 74.6 82.6 52.4 71.9 45.9 79.2 78.3 76.2 80.1 51.9 74.9 48.0 76.5 66.8 70.3
CASENet+S4 84.1 76.4 80.7 63.7 70.3 81.3 73.4 79.4 56.9 70.7 47.6 77.5 81.0 74.5 79.9 54.5 74.8 48.3 72.6 69.4 70.9
DDS\Convt 83.3 77.1 81.7 63.6 70.6 81.2 73.9 79.5 56.8 71.9 48.0 78.3 81.2 75.2 79.7 54.3 76.8 48.9 75.1 68.7 71.3
DDS\Convt† 83.6 75.4 78.9 59.9 69.7 79.7 71.9 77.2 54.7 72.0 42.8 75.5 77.1 71.9 79.1 53.4 76.4 46.9 72.6 66.9 69.3
DDS\DeSup 82.5 77.4 81.5 62.4 70.8 81.6 73.8 80.5 56.9 72.4 46.6 77.9 80.1 73.4 79.9 54.8 76.6 47.5 73.3 67.8 70.9
CASENet 83.3 76.0 80.7 63.4 69.2 81.3 74.9 83.2 54.3 74.8 46.4 80.3 80.2 76.6 80.8 53.3 77.2 50.1 75.9 66.8 71.4
DDS-R 85.4 78.3 83.3 65.6 71.4 83.0 75.5 81.3 59.1 75.7 50.7 80.2 82.7 77.0 81.6 58.2 79.5 50.2 76.5 71.2 73.3
DDS-U 87.2 79.7 84.7 68.3 73.0 83.7 76.7 82.3 60.4 79.4 50.9 81.2 83.6 78.3 82.0 60.1 82.7 51.2 78.0 72.7 74.8

semantic segmentation labeling and scene understand-

ing. Hence, we use the training set for training and the

validation set for testing.

Evaluation metrics. For performance evaluation, we

adopt several standard metrics with the recommended

parameter settings in the original papers. The first met-

ric is the benchmark protocol in (Hariharan et al. 2011)

It calculates the class-wise F-measure score that is the

harmonic mean of the precision and recall. We follow

the default settings with the matching distance toler-

ance of 0.02 for all datasets. The maximum F-measure

at the optimal dataset scale (ODS) for each class and

mean maximum F-measure across all classes are re-

ported.

We also follow (Yu et al. 2018) to evaluate semantic

edges with stricter rules than the benchmark in (Hari-

haran et al. 2011). The ground-truth maps are instance-

sensitive edges for (Yu et al. 2018). This differs from

(Hariharan et al. 2011) which uses instance-insensitive

edges. Besides, (Hariharan et al. 2011) thins the predic-

tion before matching by default. (Yu et al. 2018) further

proposes to match the raw predictions with unthinned

ground truths. This mode and the above conventional

mode are referred as “Raw” and “Thin”, respectively.

In this paper, we report both the “Thin” and “Raw”

scores for the benchmark protocol in (Yu et al. 2018).

We follow (Yu et al. 2018) to set the matching distance

tolerance of 0.02 for the original SBD dataset (Hari-

haran et al. 2011), 0.0075 for the re-annotated SBD

dataset (Yu et al. 2018), and 0.0035 for the Cityscapes

dataset (Cordts et al. 2016). The image borders of 5-

pixels width are ignored for the SBD dataset, while not

for the Cityscapes dataset.

We follow (Yu et al. 2018) to generate both “Thin”

and “Raw” ground truths for both instance-sensitive

and instance-insensitive edges. The produced edges can

be viewed as the boundaries of semantic objects or stuff

in semantic segmentation. We downsample the ground

truths and predicted edge maps of Cityscapes dataset

to half the original dimensions to speed up evaluation

as in previous works (Acuna et al. 2019; Hu et al. 2019;

Yu et al. 2017, 2018). For the performance comparison

with baseline methods, we use the default code and

pre-trained models released by the original authors to

produce edge predictions.

5.2 Ablation Studies

We first perform ablation studies on the SBD dataset

(Yu et al. 2018) to investigate various aspects of the

proposed DDS before comparing it with existing state-

of-the-art methods. To this end, we propose seven DDS

variants:

– Softmax, which only adopts the top side (Side-5)

with a 21-class softmax loss function, such that the

ground-truth edges of each category do not overlap

and thus each pixel has one specific class label.

– Basic, which employs the top side (Side-5) for multi-

label classification, meaning that we directly con-

nect the loss function of L
(5)
side(W ) on res5c to train

the detector.

– DSN, which directly applies the deeply supervised

network architecture, in which each side of the back-

bone network is connected to a 1×1 conv layer with

K output channels for SED, and the resulting acti-

vation maps from all sides are fused to generate the
final semantic edges.

– CASENet+S4, which is similar to CASENet but

takes into consideration Side-4 by connecting it to a

1× 1 conv layer to produce a single-channel feature

map, while CASENet only uses Side-1 ∼ Side-3 and

Side-5.

– DDS\Convt, which removes the information con-

verters in DDS, such that deep supervision is di-

rectly imposed after each side.

– DDS\Convt†, which not only removes the informa-

tion converters in DDS but also applies a progres-

sive training strategy, i.e., each block of the ResNet

(He et al. 2016) along with their corresponding side-

outputs is trained separately and then frozen, to

simulate the effect of information converters.

– DDS\DeSup, which removes the deep supervision

from Side-1 ∼ Side-4 of DDS but retains the infor-

mation converters.

All these variants are trained using the reweighted loss

function Eq. (6) (except Softmax ) and the original SBD

dataset for a fair comparison.
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Table 2 Ablation studies for the design of the information converter on the SBD dataset (Hariharan et al. 2011). The results
are ODS F-measure (%) scores using the original benchmark protocol in (Hariharan et al. 2011). The best performance of each
column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

1 conv unit 85.2 78.1 82.8 66.0 71.8 83.2 75.6 80.9 58.7 75.5 49.8 79.9 82.4 76.6 81.2 57.5 79.2 49.9 76.2 71.2 73.1
3 conv unit 85.8 78.7 83.5 66.0 71.8 83.6 75.4 81.4 58.9 76.9 49.5 80.4 83.0 76.7 81.7 58.3 80.2 51.3 76.0 71.5 73.5

w/o residual 85.3 79.0 83.7 65.5 70.9 83.6 75.2 81.1 58.6 75.5 49.9 79.3 82.3 76.8 81.3 57.7 79.3 50.6 76.6 70.9 73.1
DDS-R× 1/16 85.7 77.9 83.9 65.2 72.0 83.7 75.5 81.1 58.9 76.9 49.4 80.5 82.3 77.2 81.2 58.3 80.4 50.6 76.5 71.6 73.4
DDS-R× 1/4 85.4 78.1 83.5 65.1 71.7 83.2 74.8 81.5 59.0 75.3 49.0 79.5 82.3 76.3 81.2 57.8 80.3 50.3 76.6 70.5 73.1
DDS-R× 4 85.5 77.9 83.3 65.8 71.4 83.1 75.2 81.4 58.6 77.1 48.6 79.9 83.1 76.6 81.3 57.2 80.9 51.0 76.2 70.6 73.2
DDS-R 85.4 78.3 83.3 65.6 71.4 83.0 75.5 81.3 59.1 75.7 50.7 80.2 82.7 77.0 81.6 58.2 79.5 50.2 76.5 71.2 73.3

Table 3 Class-agnostic evaluation results on the SBD dataset
(Hariharan et al. 2011). The results are ODS F-measure (%)
scores using the original benchmark protocol in (Hariharan
et al. 2011).

Methods DSN CASENet DDS-R

ODS 76.6 76.4 79.3

We evaluate these variants and the original DDS

and CASENet (Yu et al. 2017) on the SBD dataset

using the original benchmark protocol in (Hariharan

et al. 2011). The evaluation results are shown in Table 1.

We can see that Softmax suffers from significant per-

formance degradation. Because the predicted semantic

edges of neural networks are usually thick and over-

lap with other classes, it is improper to assign a single

label to each pixel. Hence, we apply multi-label loss

in this paper. The Basic variant achieves an ODS F-

measure of 70.6%, which is 0.3% higher than DSN. This

further verifies our hypothesis presented in Section 3

that features from bottom layers are not sufficiently

discriminative for semantic classification. Furthermore,

CASENet+S4 performs better than DSN, demonstrat-

ing that bottom convolutional features are more suit-

able for binary edge detection. Moreover, the F-measure

of CASENet+S4 is lower than original CASENet.

Why does DDS work well? The improvement from

DDS\DeSup to DDS-R shows that the success of DDS

does not arise due to more parameters (conv layers) but

instead from the coordination between deep supervision

and information converters. On the contrary, adding

more conv layers but without deep supervision may

make network convergence more difficult. Our conclu-

sion is consistent with (Yu et al. 2017), when comparing

DDS\Convt with the results of CASENet, namely that

there is no value in directly adding binary edge super-

vision to bottom sides.

Discussion about the proposed DDS. Intuitively,

employing different but “appropriate” ground truths to

bottom and top sides may enhance the feature learning

in different layers. Upon this, the learned intermedi-

ate representations of different levels will tend to con-

tain complementary information. However, in our case,

it may be useless to directly add deep supervision of

category-agnostic edges to bottom sides, because bot-

tom layers would receive two distinct supervision in the

loss function of Eq. (6), as discussed above. Instead,

we show that with proper architecture re-design, we

can employ deep supervision to significantly boost per-

formance. The information converters adopted in the

proposed method play a central role in guiding bottom

layers for category-agnostic edge detection. In this way,

low-level edges from bottom layers encode more details,

which then assist top layers to better localize semantic

edges. They serve as buffers to separate the information

content in the backbone layers. This is essential, as they

enable bottom layers to serve as the basis of top layers

to favor highly discriminative feature maps for correct

semantic classification.

The significant performance improvement provided

by the proposed DDS-R/DDS-U over CASENet+S4 and

DDS\Convt demonstrates the importance of our de-

sign, in which different sides use different supervision

after the information format conversion. We also note

that DDS-U achieves better performance than DDS-R

by applying the unweighted loss function and aligned

edges (Yu et al. 2018).

Progressive training. DDS\Convt† adopts progres-

sive training to simulate the effect of information con-

verters, as suggested by a paper reviewer. However,

from Table 1, we can see that DDS\Convt† performs

significantly worse than other variants. This is because

progressive training cannot optimize DCNNs well. As

widely acknowledged, it is necessary for DCNNs to adopt

end-to-end training for deriving optimal parameters. In

fact, progressive training is an old way for DCNN train-

ing (Hinton et al. 2006). After the invention of ReLU

(Nair & Hinton 2010), batch normalization (Ioffe &

Szegedy 2015), and dropout (Srivastava et al. 2014),

progressive training has not been used in the deep learn-

ing community due to its poor performance. Hence,

DDS\Convt† cannot simulate information converters.

Discussion about the design of the information
converter. This paper mainly discusses and resolves

the distinct supervision targets in SED, and the core

is the existence, not the specific format, of the infor-

mation converter. Hence we design a simple informa-

tion converter that consists of two sequential residual

conv units. Here, we conduct ablation studies for this

design. Results are shown in Table 2. We experiment

with three different converter designs: i) with only one
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Table 4 ODS F-measure (%) of DDS-R/DDS-U and other competitors on the SBD dataset (Hariharan et al. 2011). The best
performance of each column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

With the evaluation metric in (Hariharan et al. 2011)
InvDet 41.5 46.7 15.6 17.1 36.5 42.6 40.3 22.7 18.9 26.9 12.5 18.2 35.4 29.4 48.2 13.9 26.9 11.1 21.9 31.4 27.9
HFL-FC8 71.6 59.6 68.0 54.1 57.2 68.0 58.8 69.3 43.3 65.8 33.3 67.9 67.5 62.2 69.0 43.8 68.5 33.9 57.7 54.8 58.7
HFL-CRF 73.9 61.4 74.6 57.2 58.8 70.4 61.6 71.9 46.5 72.3 36.2 71.1 73.0 68.1 70.3 44.4 73.2 42.6 62.4 60.1 62.5
BNF 76.7 60.5 75.9 60.7 63.1 68.4 62.0 74.3 54.1 76.0 42.9 71.9 76.1 68.3 70.5 53.7 79.6 51.9 60.7 60.9 65.4
WS 65.9 54.1 63.6 47.9 47.0 60.4 50.9 56.5 40.4 56.0 30.0 57.5 58.0 57.4 59.5 39.0 64.2 35.4 51.0 42.4 51.9
DilConv 83.7 71.8 78.8 65.5 66.3 82.6 73.0 77.3 47.3 76.8 37.2 78.4 79.4 75.2 73.8 46.2 79.5 46.6 76.4 63.8 69.0
DSN 81.6 75.6 78.4 61.3 67.6 82.3 74.6 82.6 52.4 71.9 45.9 79.2 78.3 76.2 80.1 51.9 74.9 48.0 76.5 66.8 70.3
COB 84.2 72.3 81.0 64.2 68.8 81.7 71.5 79.4 55.2 79.1 40.8 79.9 80.4 75.6 77.3 54.4 82.8 51.7 72.1 62.4 70.7
CASENet 83.3 76.0 80.7 63.4 69.2 81.3 74.9 83.2 54.3 74.8 46.4 80.3 80.2 76.6 80.8 53.3 77.2 50.1 75.9 66.8 71.4
SEAL 85.2 77.7 83.4 66.3 70.6 82.4 75.2 82.3 58.5 76.5 50.4 80.9 82.2 76.8 82.2 57.1 78.9 50.4 75.8 70.1 73.1
DDS-R 85.4 78.3 83.3 65.6 71.4 83.0 75.5 81.3 59.1 75.7 50.7 80.2 82.7 77.0 81.6 58.2 79.5 50.2 76.5 71.2 73.3
DDS-U 87.2 79.7 84.7 68.3 73.0 83.7 76.7 82.3 60.4 79.4 50.9 81.2 83.6 78.3 82.0 60.1 82.7 51.2 78.0 72.7 74.8

With the “Thin” evaluation metric in (Yu et al. 2018)
CASENet 83.6 75.3 82.3 63.1 70.5 83.5 76.5 82.6 56.8 76.3 47.5 80.8 80.9 75.6 80.7 54.1 77.7 52.3 77.9 68.0 72.3
SEAL 84.5 76.5 83.7 64.9 71.7 83.8 78.1 85.0 58.8 76.6 50.9 82.4 82.2 77.1 83.0 55.1 78.4 54.4 79.3 69.6 73.8
STEAL 85.2 77.3 84.0 65.9 71.1 85.3 77.5 83.8 59.2 76.4 50.0 81.9 82.2 77.3 81.7 55.7 79.5 52.3 79.2 69.8 73.8
Gated-SCNN 81.6 70.5 73.9 60.2 64.1 82.5 72.9 78.0 51.8 67.3 42.2 74.6 74.3 71.4 77.6 49.3 72.3 46.6 73.7 57.0 67.1
DDS-R 85.6 77.1 82.8 64.0 73.5 85.4 78.8 84.4 57.7 77.6 51.9 81.2 82.4 77.1 82.5 56.3 79.5 54.5 80.3 70.4 74.1
DDS-U 86.5 78.4 84.4 67.0 74.3 85.8 80.2 85.9 60.4 80.8 53.9 83.0 84.4 78.8 83.9 58.7 81.9 56.0 82.1 73.0 76.0

DFF 86.5 79.5 85.5 69.0 73.9 86.1 80.3 85.3 58.5 80.1 47.3 82.5 85.7 78.5 83.4 57.9 81.2 53.0 81.4 71.6 75.4
DDS-R 86.7 79.6 85.6 68.4 74.5 86.5 81.1 85.9 60.5 79.3 53.5 83.2 85.2 78.8 83.9 58.4 80.8 54.4 81.8 72.2 76.0

With the “Raw” evaluation metric in (Yu et al. 2018)
CASENet 71.8 60.2 72.6 49.5 59.3 73.3 65.2 70.8 51.9 64.9 41.2 67.9 72.5 64.1 71.2 44.0 71.7 45.7 65.4 55.8 62.0
SEAL 81.1 69.6 81.7 60.6 68.0 80.5 75.1 80.7 57.0 73.1 48.1 78.2 80.3 72.1 79.8 50.0 78.2 51.8 74.6 65.0 70.3
STEAL 77.2 66.2 78.9 56.8 63.2 77.8 71.9 75.3 55.0 69.4 43.8 73.1 76.9 69.8 75.5 48.3 76.2 47.7 70.4 60.5 66.7
Gated-SCNN 70.4 56.9 64.8 49.6 54.7 70.5 61.9 66.0 46.9 55.3 36.7 61.0 62.4 59.9 67.6 39.5 68.2 40.1 59.6 49.1 57.1
DDS-R 80.5 68.2 78.6 56.4 67.6 80.9 72.7 77.6 55.4 70.9 47.0 74.9 77.5 70.0 77.4 50.9 75.7 50.7 74.5 65.5 68.6
DDS-U 83.8 71.8 82.1 61.7 70.4 82.9 76.9 80.8 58.5 77.1 49.9 77.8 81.5 73.5 81.0 52.9 81.3 53.0 76.3 69.1 72.1

DFF 77.6 65.7 79.3 57.2 65.5 78.5 72.0 76.2 53.7 71.9 42.5 72.0 77.0 68.8 75.1 50.6 76.6 46.9 71.9 63.6 67.1
DDS-R 79.2 67.6 77.7 58.7 65.9 81.0 72.9 76.6 55.8 70.3 47.6 74.0 76.9 68.8 76.5 52.5 77.0 48.8 72.8 65.7 68.3

conv unit; ii) with three conv units; iii) without resid-

ual connections in the conv units (plain conv units).

It is easy to observe that the information converter

with three residual conv units achieves the best per-

formance, but it is only slightly better than that with

two residual conv units. To make a trade-off between

model complexity and performance, we use two residual

conv units as the default setting.

We also evaluate the effect of the number of pa-

rameters of the information converter. Here, we change

its size by simply multiplying a constant to the num-

ber of channels of the default information converter.

In this way, the resulting variants have various model

sizes but keep the same structure. Specifically, we try

three constants of 1/4, 1/2, and 2, leading to 1/16,

1/4, and 4 times of the default model size, respectively.

The results are depicted in Table 2. It is interesting

to find that the proposed method is quite robust to

different model sizes, demonstrating that the improve-

ment mainly comes from the existence of the informa-

tion converter, not its specific format.

Improvement of the edge localization. To demon-

strate if the introduced information converter actually

improves the localization of the semantic edges, we ig-

nore the semantic labels and perform class-agnostic eval-

uation for the proposed DDS and previous baselines.

Given an input image, SED methods generate an edge

probability map for each class. To generate a class-

agnostic edge map for an image, at each pixel, we view

the maximum edge probability across all classes as the

class-agnostic edge probability at this pixel. For ground

truth, at each pixel, if any class has an edge on this

pixel, this pixel is viewed as a class-agnostic edge pixel.

Then, we use the standard benchmark in (Hariharan

et al. 2011) for evaluation. From Table 3, we find DDS

can significantly improve the edge localization accu-

racy, which demonstrates that imposing class-agnostic

edge supervision at bottom network sides can well ben-

efit edge localization. After exploring DDS with sev-

eral variants and establishing the effectiveness of the

approach, we summarize the results obtained by our

method and compare it with previous state-of-the-art

methods.

5.3 Evaluation on SBD

In this part, we compare DDS-R/DDS-U on the SBD

dataset (Hariharan et al. 2011) with previous state-

of-the-art methods, including InvDet (Hariharan et al.

2011), HFL-FC8 (Bertasius et al. 2015b), HFL-CRF

(Bertasius et al. 2015b), BNF (Bertasius et al. 2016),

WS (Khoreva et al. 2016), DilConv (Yu & Koltun 2016),

DSN (Yu et al. 2017), COB (Maninis et al. 2017), CASENet

(Yu et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna

et al. 2019), DFF (Hu et al. 2019), and Gated-SCNN

(Takikawa et al. 2019). Among them, DFF (Hu et al.
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Table 5 ODS F-measure (%) of DDS-R/DDS-U and other competitors on the re-annotated SBD dataset (Yu et al. 2018).
The best performance of each column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

With the “Thin” evaluation metric in (Yu et al. 2018)
CASENet 74.5 59.7 73.4 48.0 67.1 78.6 67.3 76.2 47.5 69.7 36.2 75.7 72.7 61.3 74.8 42.6 71.8 48.9 71.7 54.9 63.6
SEAL 78.0 65.8 76.6 52.4 68.6 80.0 70.4 79.4 50.0 72.8 41.4 78.1 75.0 65.5 78.5 49.4 73.3 52.2 73.9 58.1 67.0
STEAL 77.1 63.6 76.2 51.1 68.0 80.4 70.0 76.8 49.4 71.9 40.4 78.1 74.7 64.5 75.7 45.4 73.5 47.5 73.5 58.7 65.8
Gated-SCNN 74.8 58.4 65.9 47.1 63.0 74.5 65.6 71.6 41.4 61.6 39.4 70.8 65.0 57.4 72.9 44.1 69.3 44.0 64.5 50.5 60.1
DDS-R 79.7 65.2 74.6 51.8 71.9 81.3 72.5 79.4 49.2 75.1 43.9 77.8 75.3 65.2 78.9 51.1 74.9 54.1 75.1 61.7 67.9
DDS-U 81.4 67.6 77.8 55.7 70.9 82.0 74.5 81.2 52.1 76.5 47.2 79.6 77.3 68.1 80.2 53.4 78.5 56.1 76.6 63.9 70.0

DFF 78.6 66.2 77.9 53.2 72.3 81.3 73.3 79.0 50.7 76.8 38.7 77.2 78.6 65.2 77.9 49.4 76.1 49.7 74.7 62.9 68.0
DDS-R 78.8 68.0 78.3 55.0 71.9 82.4 74.6 80.5 52.0 74.0 42.0 78.3 77.1 66.1 78.5 49.3 77.5 49.3 76.9 64.8 68.8

With the “Raw” evaluation metric in (Yu et al. 2018)
CASENet 65.8 51.5 65.0 43.1 57.5 68.1 58.2 66.0 45.4 59.8 32.9 64.2 65.8 52.6 65.7 40.9 65.0 42.9 61.4 47.8 56.0
SEAL 75.3 60.5 75.1 51.2 65.4 76.1 67.9 75.9 49.7 69.5 39.9 74.8 72.7 62.1 74.2 48.4 72.3 49.3 70.6 56.7 64.4
STEAL 70.9 55.9 71.6 47.6 61.5 72.6 64.6 70.2 47.5 67.4 37.3 70.6 69.4 59.1 69.2 44.3 69.1 42.6 67.7 53.5 60.6
Gated-SCNN 66.8 50.1 59.4 44.2 54.9 64.6 57.9 62.2 39.6 50.9 35.9 59.5 56.5 48.9 64.2 41.3 64.0 35.6 54.2 45.5 52.8
DDS-R 75.6 61.1 71.0 49.5 67.7 76.1 67.2 74.2 48.8 69.1 40.4 72.5 71.7 60.4 73.4 49.6 70.6 49.5 71.9 59.4 64.0
DDS-U 78.4 62.7 75.6 53.4 67.8 78.5 71.4 77.4 51.3 72.8 44.5 74.7 74.8 64.3 76.3 51.9 77.3 51.9 73.7 62.9 67.1

DFF 72.3 58.4 73.4 48.7 65.4 74.8 66.4 72.5 47.8 70.1 34.7 69.2 71.5 58.7 70.2 47.5 71.2 43.7 69.5 59.1 62.3
DDS-R 74.2 61.2 71.3 51.9 65.5 77.3 68.0 73.8 50.0 66.0 39.4 70.8 70.5 58.9 71.8 49.0 72.6 44.7 71.6 62.2 63.5

DSN CASENet DDS-R

Fig. 4 A qualitative comparison of DSN, CASENet and
DDS-R. First row: the original image, ground truth, and cat-
egory color codes. This image is taken from the SBD dataset
(Hariharan et al. 2011). Second row: the semantic edges pre-
dicted by different methods. Third row: an enlarged area of
predicted edges. Fourth row: the predicted horse boundaries
only. Last row: the predicted person boundaries only. Green,
red, white, and blue pixels represent true positive, false posi-
tive, true negative, and false negative points, respectively, at
the threshold of 0.5. Best viewed in color.

2019) shares the same distinct supervision problem as

CASENet, so we also integrate DDS-R into DFF to

demonstrate the generalizability of DDS-R. We adopt

the same code implementation and training strategies

for DFF-based DDS-R as the original DFF. Gated-

Table 6 Average runtime per image on the SBD dataset
(Hariharan et al. 2011).

Methods DSN CASENet SEAL DDS
Time (s) 0.171 0.166 0.166 0.175

SCNN (Takikawa et al. 2019) learns semantic edges

for improving the training of semantic segmentation.

Hence, we retrain it for semantic edge detection by re-

moving its segmentation loss and dual task loss, and

the other settings are kept by default.

Results are summarized in Table 4. DDS-U achieves

the state-of-the-art performance across all competitors.

The ODS F-measure of the proposed DDS-U is 1.7%

higher than SEAL and 3.4% higher than CASENet in

terms of the metric in (Hariharan et al. 2011), so deliv-

ering a new state-of-the-art. We can observe that DDS-

R can also improve the performance of DFF (Hu et al.
2019). Therefore, the proposed DDS can be viewed as

a general idea to improve SED. The improvement from

CASENet to DDS is also larger than the improvement

of STEAL. Moreover, InvDet (Hariharan et al. 2011) is

a non-deep learning based approach which shows com-

petitive results among other conventional approaches.

COB (Maninis et al. 2017) is a state-of-the-art category-

agnostic edge detection method, and combining it with

semantic segmentation of DilConv (Yu & Koltun 2016)

produces a competitive semantic edge detector. COB’s

superiority over DilConv reflects the effectiveness of its

fusion algorithm. The fact that both CASENet and

DDS-R/DDS-U outperform COB illustrates the impor-

tance of directly learning semantic edges, because the

combination of binary edges and semantic segmentation

is insufficient for SED. The average runtime of DSN,

CASENet, and DDS is shown in Table 6. DDS can gen-

erate state-of-the-art semantic edges with only a slight

reduction in speed.

Yu et al. (2018) discovered that some of the original

SBD labels are a little noisy, so they re-annotated 1059
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Table 7 ODS F-measure (%) of DDS-R/DDS-U and other competitors on the Cityscapes dataset (Cordts et al. 2016). The
best performance of each column is highlighted in bold.

Methods road sid. bui. wall fen. pole light sign veg. ter. sky per. rider car tru. bus tra. mot. bike mean

With the “Thin” evaluation metric in (Yu et al. 2018)
CASENet 86.2 74.9 74.5 47.6 46.5 72.8 70.0 73.3 79.3 57.0 86.5 80.4 66.8 88.3 49.3 64.6 47.8 55.8 71.9 68.1
SEAL 87.6 77.5 75.9 47.6 46.3 75.5 71.2 75.4 80.9 60.1 87.4 81.5 68.9 88.9 50.2 67.8 44.1 52.7 73.0 69.1
STEAL 87.8 77.2 76.4 49.5 49.2 74.9 73.2 76.3 80.8 58.9 86.8 80.2 69.0 83.2 52.1 67.7 53.2 55.8 72.8 69.7
Gated-SCNN 88.9 78.7 78.3 51.3 52.3 78.6 78.7 78.0 82.2 62.3 87.7 83.5 70.8 90.6 33.1 60.4 31.6 50.9 74.4 69.1
DDS-R 86.1 76.5 76.1 49.8 49.9 74.6 76.4 76.8 80.4 58.9 87.2 83.5 70.7 89.6 52.9 71.5 50.4 61.8 74.4 70.9
DDS-U 89.2 79.2 79.0 51.9 52.9 77.5 79.4 80.3 82.6 61.4 88.8 85.0 74.1 91.1 59.0 76.0 55.7 63.6 76.3 73.8
DFF 89.4 80.1 79.6 51.3 54.5 81.3 81.3 81.2 83.6 62.9 89.0 85.4 75.8 91.6 54.9 73.9 51.9 64.3 76.4 74.1
DDS-R 89.7 79.4 80.4 52.1 53.0 82.4 81.9 80.9 83.9 62.0 89.4 86.0 77.8 92.3 59.8 74.8 55.3 64.4 77.4 74.9

With the “Raw” evaluation metric in (Yu et al. 2018)
CASENet 66.8 64.6 66.8 39.4 40.6 71.7 64.2 65.1 71.1 50.2 80.3 73.1 58.6 77.0 42.0 53.2 39.1 46.1 62.2 59.6
SEAL 84.4 73.5 72.7 43.4 43.2 76.1 68.5 69.8 77.2 57.5 85.3 77.6 63.6 84.9 48.6 61.9 41.2 49.0 66.7 65.5
STEAL 75.8 68.5 69.8 34.9 36.1 73.4 66.7 67.7 73.5 49.7 78.7 72.9 59.1 76.5 35.3 52.8 37.7 43.8 63.7 59.8
Gated-SCNN 77.3 69.7 74.8 38.2 40.1 79.7 72.6 72.4 77.7 54.2 82.0 77.7 62.0 86.1 17.1 37.7 14.3 37.5 66.8 59.9
DDS-R 73.3 65.9 70.9 33.2 37.4 76.8 70.1 70.2 74.6 50.4 80.6 77.9 62.6 82.5 37.1 55.0 32.0 49.4 66.1 61.4
DDS-U 83.5 74.2 76.0 37.5 40.7 79.5 75.6 75.3 79.3 55.7 85.3 81.1 67.1 87.9 44.6 63.4 40.4 52.3 70.0 66.8

DFF 72.8 68.3 72.6 37.2 42.2 79.6 75.0 73.9 75.3 51.4 80.8 78.6 69.4 83.0 44.1 56.7 38.4 52.0 68.8 64.2
DDS-R 80.8 70.8 76.4 38.9 41.1 80.0 78.2 76.3 79.2 53.2 82.5 81.8 72.2 86.2 44.8 59.5 37.6 55.7 71.3 66.7

DSN-Horse DSN-Person CASENet DDS-R

Side-1

Side-2

Side-3

Side-4 Side5-Horse

Side-5 Side5-Person

Fig. 5 Side activation maps on the input image of Fig. 4.
The first two columns display DSN’s side class classification
activation for the classes of horse and person, respectively.
The last two columns show the side features of Side-1 ∼ Side-
3 and class classification activation of Side-5 for CASENet
and our DDS-R, respectively. These images are obtained by
normalizing the activation to [0, 255]. Note that all activa-
tions are directly outputted without any non-linearization,
e.g., sigmoid function.

images from the test set to form a new test set. We

compare our method with CASENet (Yu et al. 2017),

SEAL (Yu et al. 2018), STEAL (Acuna et al. 2019),

Gated-SCNN (Takikawa et al. 2019), and DFF (Hu

et al. 2019) on this new dataset. The results are shown

in Table 5. DDS can improve the performance for both

CASENet and DFF in terms of all evaluation metrics.

Specifically, the ODS F-measures of DDS-U is 3.0% and

2.7% higher than recent SEAL (Yu et al. 2018) in terms

of the “Thin” and “Raw” metrics in (Yu et al. 2018),

respectively. Note that SEAL retrains CASENet with

a new training strategy: i.e., simultaneous alignment

and learning. With the same training strategy, DDS-R

obtains a 4.3% and 8.0% higher ODS F-measure than

CASENet in terms of the “Thin” and “Raw” metrics

in (Yu et al. 2018), respectively.

To better visualize the edge prediction results, an

example is shown in Fig. 4. We also show the nor-

malized images of side activation in Fig. 5. All acti-

vations are obtained before sigmoid non-linearization.

For a simple arrangement of figures, we do not dis-

play Side-4 activation of DDS-R. From Side-1 to Side-3,

one can see that the feature maps of DDS-R are sig-

nificantly clearer than those of DSN and CASENet.

Clear category-agnostic edges can be found with DDS-

R, while DSN and CASENet suffer from noisy acti-

vation. For example, in CASENet, without imposing

deep supervision on Side-1 ∼ Side-3, edge activation

can barely be found. For category classification acti-

vation, DDS-R can separate horse and person clearly,

while DSN and CASENet can not. Therefore, the infor-

mation converters also help to better optimize Side-5

for category-specific classification. This further verifies

the feasibility of the proposed DDS architecture.

More qualitative examples are displayed in Fig. 6.

DDS-R/DDS-U can produce clearer and smother edges

than other detectors. In the second column, it is in-

teresting to note that most detectors can recognize the

boundaries of the objects with missing annotations, i.e.,

the obscured dining table and human arm. In the third

column, DDS-R/DDS-U can generate strong responses

at the boundaries of the small cat, while all other de-

tectors only have weak or noisy responses. This demon-

strates that DDS is more robust for detecting small

objects. We also find that DDS-U and SEAL can gen-

erate thinner edges, suggesting that training with reg-



Semantic Edge Detection with Diverse Deep Supervision 13

aeroplane bicycle bird boat bottle bus car cat chair cow
dining table dog horse motorbike person potted plant sheep sofa train tv monitor

O
ri
g
in
a
l
Im

a
g
e
s

G
ro

u
n
d

T
ru

th
D
S
N

C
A
S
E
N
e
t

S
E
A
L

S
T
E
A
L

D
F
F

D
D
S
-R

D
D
S
-U

Fig. 6 Some examples from SBD dataset (Hariharan et al. 2011). From top to bottom: color codes, original images, ground
truth, DSN, CASENet (Yu et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna et al. 2019), DFF (Hu et al. 2019), our DDS-R
and DDS-U. We follow the color coding protocol in (Yu et al. 2018).
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road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle
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Fig. 7 Some examples from Cityscapes dataset (Cordts et al. 2016). From top to bottom: color codes, original images, ground
truth, CASENet (Yu et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna et al. 2019), DFF (Hu et al. 2019), our DDS-R and
DDS-U. We follow the color coding protocol in (Yu et al. 2018). The produced edges of DDS are smoother and clearer.
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ular unweighted sigmoid cross entropy loss and refined

ground-truth edges is helpful for accurately locating

thin boundaries.

5.4 Evaluation on Cityscapes

The Cityscapes dataset (Cordts et al. 2016) is more

challenging than SBD (Hariharan et al. 2011). The im-

ages in Cityscapes are captured in more complicated

scenes, usually in urban street scenes in different cities.

There are more objects, especially overlapping objects,

in each image. Hence, we also adopt Cityscapes for eval-

uating semantic edge detectors using the “Thin” and

“Raw” metrics in (Yu et al. 2018). We compare DDS

with CASENet (Yu et al. 2017), SEAL (Yu et al. 2018),

STEAL (Acuna et al. 2019), DFF (Hu et al. 2019), and

Gated-SCNN (Takikawa et al. 2019).

The evaluation results are reported in Table 7. Both

DDS-R and DDS-U significantly outperform other meth-

ods in terms of both “Thin” and “Raw” metrics. With

the same loss function, the ODS F-measure of DDS-R

is 2.8% higher than CASENet in terms of the “Thin”

metric in (Yu et al. 2018), and DDS-U is 4.7% higher

than SEAL correspondingly. STEAL and Gated-SCNN

achieve similar performance, and both are much worse

than DDS-R and DDS-U. Note that Gated-SCNN is

the state-of-the-art semantic segmentation model, sug-

gesting that it is necessary to study semantic edge de-

tection rather than directly applying existing related

techniques. Some qualitative comparisons are shown

in Fig. 7. We can see that DDS-R/DDS-U produces

smoother and clearer edges in various complicated sce-

narios, which is brought by the low-level binary edge

supervision of DDS.

6 Conclusion

In this paper, we study the SED problem. Previous

methods suggest that deep supervision is not neces-

sary (Hu et al. 2019; Yu et al. 2017, 2018) for SED.

Here, we show that this is false and, with proper ar-

chitecture re-design, that the network can be deeply

supervised to improve detection results. The core of

our approach is the introduction of the novel infor-

mation converter, which plays a central role in resolv-

ing the distinct supervision targets by successfully ap-

plying category-aware edges at the top side and the

category-agnostic edges at bottom sides. The proposed

DDS achieves state-of-the-art performance on the pop-

ular SBD (Hariharan et al. 2011) and Cityscapes (Cordts

et al. 2016) datasets. Our idea to leverage deep super-

vision for training a deep network opens up a new path

towards putting more emphasis utilizing rich feature hi-

erarchies from deep networks for SED as well as other

high-level tasks such as semantic segmentation (Chen

et al. 2016; Maninis et al. 2017), object detection (Fer-

rari et al. 2008; Maninis et al. 2017), and instance seg-

mentation (Hayder et al. 2017; Kirillov et al. 2017).

Future Work. Besides category-agnostic edge detec-

tion and SED, relevant tasks commonly exist in com-

puter vision (Zamir et al. 2018), such as segmenta-

tion and saliency detection, object detection and key-

point detection, edge detection and skeleton extraction.

Building multi-task networks to solve relevant tasks is a

good way to save computational resources in practical

applications (Hou et al. 2018). However, distinct su-

pervision targets usually prevent this goal, as shown in

this paper. From this point of view, the proposed DDS

provides a new perspective to multi-task learning. In

the future, we plan to leverage the idea of information

converter for more relevant tasks.
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