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Abstract Feature matching aims at generating corre-

spondences across images, which is widely used in many

computer vision tasks. Although considerable progress

has been made on feature descriptors and fast matching

for initial correspondence hypotheses, selecting good

ones from them is still challenging and critical to the

overall performance. More importantly, existing meth-

ods often take a long computational time, limiting their

use in real-time applications. This paper attempts to

separate true correspondences from false ones at high

speed. We term the proposed method GMS (Grid-based

Motion Statistics), which incorporates the smoothness

constraint into a statistic framework for separation and

uses a grid-based implementation for fast calculation.

GMS is robust to various challenging image changes,

involving in viewpoint, scale, and rotation. It is also

fast, e.g., take only 1 or 2 milliseconds in a single CPU

thread, even when 50K correspondences are processed.

This has important implications for real-time applica-
tions. What’s more, we show that incorporating GMS

into the classic feature matching and epipolar geometry

estimation pipeline can significantly boost the overall

performance. Finally, we integrate GMS into the well-

known ORB-SLAM system for monocular initialization,

resulting in a significant improvement.
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(a) ORB-RT

(b) ORB-RT-GMS

Fig. 1 GMS matching. Although Lowe’s ratio test (RT) can
remove many false matches, generated by ORB (Rublee et al.
2011) features here, the results are still noisy (a) and de-
generate RANSAC (Breiman 2001) based estimators in ap-
plications. To address this issue, we propose GMS, which
further removes motion-inconsistent correspondences towards
the high-accuracy matching (b).

1 Introduction

Feature matching is one of the most fundamental prob-

lems in the computer vision community. It aims to gen-
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erate correspondences across different views of an ob-

ject or scene, which is widely used in many vision tasks

such as Structure-from-Motion (Schonberger & Frahm

2016) and Visual SLAM (Davison et al. 2007; Mur-

Artal et al. 2015). Typical solutions rely on feature

detectors (Harris & Stephens 1988), descriptors (Lowe

2004), and matchers (Muja & Lowe 2009) for generating

putative correspondences. Then the selected correspon-

dences are taken as input in a high-level task, where

a RANSAC (Fischler & Bolles 1981) based estimator

is often applied to fit a geometric model and remove

outliers simultaneously. Although considerable progress

has been made on features, matchers, and estimators,

the overall performance is still limited by the false cor-

respondences, i.e., they cause robust estimators to fail

to find a correct model and true inliers. This problem is

critical but received relatively less attention than other

problems motioned above. More importantly, existing

approaches are time-consuming (Lin et al. 2017), limit-

ing their use in real-time applications. To address this

gap, we propose a novel method termed GMS (Grid-

based Motion Statistics) for separating true correspon-

dences from false ones at high speed.

The proposed method relies on the motion smooth-

ness constraint, i.e., we assume that neighboring pix-

els in one image would move together since they often

land in one rigid object or structure. Although the as-

sumption is not generally correct, e.g., violated in im-

age boundaries, it suits to most regular pixels. This is

sufficient for our purpose since we are not targeting a

final correspondence solution but a set of high-quality

correspondences for RANSAC-like approaches. The as-

sumption causes that neighboring true correspondences

in one image would also be close in other images, while

false correspondences not. This allows us to classify a

correspondence as true or false by just counting the

number of its similar neighbors, the correspondences

that are close to the reference correspondence in both

images. Fig. 2 shows an visualization for our assump-

tion, and Sec. 3.2 presents the theoretical analysis.

The computational cost is critical to a false match

removal method, since feature matching is often used in

real-time applications such as Visual SLAM (Mur-Artal

et al. 2015). We accelerate the calculation by propos-

ing a grid-based framework in Sec. 3.3, where we di-

vide images into non-overlap cells and process data at

the cell level instead of at individual correspondence

level. This avoids the distance comparison between cor-

respondences, reducing the overall complexity from the

plain O(N2) to O(N). As a result, GMS takes only

1 or 2 milliseconds CPU time in a single thread to

identify true correspondences, even when the number

of matches reaches 50K, as shown in Fig. 11.

The basic grid framework suffers from significant

image changes in scale and rotation. To address the

issue, we propose multi-scale and multi-rotation solu-

tions. Specifically, we define 5 relative scales and 8 rela-

tive rotations between image pairs for scale and rotation

enhancement, respectively. Then, we repeat the basic

GMS algorithm at different settings. The best results

are collected. As no data dependence exists in different

repeats, the proposed methods can be implemented us-

ing multi-thread programming. Theoretically, they can

be as fast as the basic GMS algorithm, when 8 (or 5)

CPU threads are available. This resource burden is af-

fordable to a regular desktop or laptop.

We conduct a comprehensive evaluation of GMS, in-

cluding the robustness to common image changes, the

performance and efficiency with varying feature num-

bers, and the accuracy of retrieved correspondences.

Moreover, we evaluate the proposed method on very re-

cent FM-Bench (Bian et al. 2019) for exploring how it

can contribute to epipolar geometry estimation. The re-

sults demonstrate the superiority of GMS against other

state-of-the-art alternatives. Finally, we incorporate the

proposed GMS into the well-known ORB-SLAM (Mur-

Artal et al. 2015) for monocular initialization, and a

clear improvement is shown. This paper is an extension

of our preliminary version (Bian et al. 2017). We extend

it in the following four aspects: (a) more straightforward

and more intuitive presentation; (b) scale and rotation

enhancements; (c) more comprehensive evaluation; (d)

use in real-time applications.

2 Related Works

Relation to RANSAC. The proposed method attempts

to remove false correspondence. Although it is related

to RANSAC (Fischler & Bolles 1981) based algorithms,

which fit a model from correspondences and remove

outliers, note that GMS is not an alternative to the

latter. The difference includes: (i) GMS cannot fit a

model as RANSAC-based estimators; and (ii) outliers

are model-dependent and are not conceptually equiva-

lent to false correspondences. For example, in the image

based reconstruction problem where the static scene as-

sumption is made, some correct correspondences would

also be removed as outliers if they land in moving ob-

jects. Instead of replacing RANSAC, the goal of GMS

is to provide high-quality correspondence hypotheses

to the latter towards better overall performance, i.e.,

model fitting and inlier generation.

False correspondence removal. Lowe’s ratio test (Lowe

2004), referred as RT, is a widely used approach. It com-

pares the distance of two nearest neighbors for identify-

ing distinctive correspondences. However, due to lack-

ing more powerful constraints, many false correspon-

dences remain under challenging scenarios. An exam-

ple is shown in Fig. 1, where applying GMS can further

remove false correspondences. Other methods include

KVLD (Liu & Marlet 2012) which uses constraints in

both photometry and geometry, and VFC (Ma et al.
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2014) which interpolates a vector field between two

point sets and estimates the consensus set. Recently,

CODE (Lin et al. 2017) leverages non-linear optimiza-

tion for globally modeling the motion smoothness. Our

method is inspired by it, but simpler and more efficient.

LPM (Ma et al. 2019) explores the local structure of

surrounding feature points, which makes more restric-

tive assumptions than GMS. LC (Yi et al. 2018) uses

deep neural networks to find good correspondences by

fitting an essential matrix. It is like an alternative to

RANSAC (Fischler & Bolles 1981). However, the au-

thors show that the predicted model is not as good as

using RANSAC. They instead suggest using the method

for finding good correspondences and then applying

RANSAC for model fitting.

Successful applications that use GMS. After the con-

ference version of GMS was published, we notice that

many recent works have used our method in their ap-

plications and achieved remarkable performances. For

instance, (Causo et al. 2018) use GMS in an item pick-

ing system for the Amazon Robotics Challenge, and

the system can pick all target items with the shortest

amount of time; (Zhang et al. 2019) use GMS and ex-

tend the idea to tackle the tracking problem in dynamic

scenes. The resultant solution produces one order of

magnitude more accurate camera trajectory than ORB-

SLAM2 (Mur-Artal et al. 2015) in the TUM bench-

mark (Sturm et al. 2012); (Yoon et al. 2018) use GMS

for point cloud triangulation in 3D their trajectory re-

construction system. Moreover, our implementation of

GMS has been integrated into OpenCV library (Brad-

ski 2000), and we encourage researchers to use and ex-

tend it in more real-time applications.

3 Grid-based Motion Statistics

Given putative correspondences generated by feature

detectors, descriptors, and matchers, our goal is to sep-

arate the true correspondences from false ones.

3.1 Motion Smoothness Assumption

To differentiate true and false correspondences, we as-

sume that pixels those are spatially close in the im-

age coordinates would move together. It is intuitive, i.e.,

imagine that neighboring pixels have a high probability

of landing in one rigid object or structure and hence

have similar motions. The assumption is not generally

correct, e.g., it may be violated in image boundaries

where neighboring pixels may land in different objects

and these objects have independent motions. However,

it suits regular pixels, which are overwhelmingly more

than edges. Besides, as our goal is a set of high-quality

a true match 𝑐𝑐𝑖𝑖

a false match 𝑐𝑐𝑗𝑗

similar neighbors of 𝑐𝑐𝑖𝑖

𝐼𝐼1 𝐼𝐼2

|𝑆𝑆𝑖𝑖| = 2
|𝑆𝑆𝑗𝑗| = 0

Fig. 2 Motion Statistics. True correspondences often have
more similar neighbors than false correspondences, so we count
the number of similar neighbors for separating them.

correspondence hypotheses for further processing in-

stead of a final correspondence solution, the assumption

is sufficient for our purpose.

3.2 Motion Statistics

True correspondences are influenced by the smoothness

constraints, while false correspondences are not. There-

fore, true correspondences are often have more simi-

lar neighbors than false correspondences, as shown in

Fig. 2, where the similar neighbors refer to the corre-

spondences which are close to the reference correspon-

dence in both images. We use the number of similar

neighbors to identify good correspondences.

Formally, let C be all correspondences across im-

age I1 and I2, ci be one correspondence that connects

the point pi and qi between two images. We define ci’s

neighbors as

Ni = {cj |cj ∈ C, cj 6= ci, d(pi, pj) < r1}, (1)

and its similar neighbors as

Si = {cj |cj ∈ Ni, d(qi, qj) < r2}, (2)

where d(·, ·) refers to the Euclidean distance of two

points, and r1, r2 are thresholds. We term |Si|, the num-

ber of elements in Si, motion support for ci.

The motion support can be used as a discriminative

feature to distinguish true and false correspondences.

Modeling the distribution of |Si| for true and false cor-

respondence, we get:

|Si| ∼

{
B(|Ni|, t), if ci is correct

B(|Ni|, ε), if ci is wrong
(3)

where B(·, ·) refers to the binomial distribution. |Ni|
refers to the number of neighbors for ci. t and ε are the

respective probabilities that a true and false correspon-

dence are supported by one of its neighbors.
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In Eqn. 3, t is dominated by the feature quality, i.e.,

it is near to correct rate of correspondences. ε is usually

small because false correspondences are nearly random

distributed in regular regions. Note that it would be

larger in visually similar but geographically different re-

gions, e.g., repetitive structures (Kushnir & Shimshoni

2014). Here we assume that features are sufficiently dis-

criminating that their correspondence distribution is

better than random and that caused by repetitive pat-

terns, i.e., t is larger than ε.

We can derive |Si|’s expectation:

E|Si| =

{
Et = |Ni| · t, if ci is correct

Ef = |Ni| · ε, if ci is wrong
(4)

and variance:

V|Si| =

{
Vt = |Ni| · t · (1− t), if ci is correct

Vf = |Ni| · ε · (1− ε), if ci is wrong
(5)

This allows definition of partionability between true

and false correspondences as:

P =
|Et − Ef |√
Vt +

√
Vf

=
|Ni| · (t− ε)√

|Ni| · t · (1− t) +
√
|Ni| · ε · (1− ε)

,

(6)

where P ∝
√
|Ni| and if |Ni| → ∞, P → ∞. This

means that the separability of true and false matches

based on |Si| becomes increasingly reliable as the fea-

ture numbers are sufficiently large. This occurs even

if t is only slightly greater than ε, making it possible

to obtain reliable correspondence on difficult scenes by

simply increasing the number of detected features. The

similar results are shown in (Lin et al. 2018), where

ambiguous distributions are separated through large

numbers of independent trials. Besides, it shows that

improving feature quality (t) can also boost the sepa-

rability.

The distinctive attributes permit us to classify ci as

true or false by simply thresholding |Si|, giving:

ci ∈

{
T , if |Si| > τi

F , otherwise
(7)

where T and F denote true and false correspondence

sets, respectively. Based on Eqn. 6, we set τi to be:

τi = α
√
|Ni|, (8)

where α is a hyperparameter, and we empirically find

that it results in good performance when α ranges from

4 to 6.

G1 G2

a

b

c

d

Fig. 3 Grid-based framework. We use the pre-computed grid
to find similar neighbors instead of explicit distance compari-
son between points.

3.3 Grid-based Framework

The complexity of a plain implementation for comput-

ing Si is O(N), where N = |C| is the number of all

correspondences, since we need to compare ci with all

other correspondences. Therefore, the overall algorithm

complexity is O(N2). Although approximated nearest

neighbor algorithms, like FLANN (Muja & Lowe 2009),

can reduce the complexity to O(Nlog(N)), we show

that using the proposed grid-based framework is faster

(O(N)).

Fig. 3 illustrates the framework, where we divide

two images into non-overlap cells G1 and G2, respec-

tively. Assume ci be a correspondence that lands in the

cell Ga and Gb, like one of the red correspondences in

Fig. 3. The neighbors of ci are re-defined as:

Ni = {cj |cj ∈ Ca, ci 6= cj}, (9)

and the similar neighbors are re-defined as:

Si = {cj |cj ∈ Cab, ci 6= cj}, (10)

where Ca are correspondences those land inGa, and Cab

are correspondences those land in Ga and Gb simultane-

ously. In other words, we regard correspondences those

are in one cell as neighbors, and correspondences those
are in one cell-pair as similar neighbors. This avoids

the explicit comparison between correspondences. To

obtain motion support for all correspondences, we only

need to put them in cell-pairs. In this fashion, the over-

all complexity is reduced to O(N).

Note that correspondences those land in one cell-

pair share the same motion support, so we only need

classify cell-pairs instead of individual correspondences.

Moreover, instead of determining all possible cell-pairs,

we only check the best one cell-pair that contains most

correspondences for each cell in the first image. For

example, we only check Gab and discard Gac, Gad in

Fig. 3. This operation significantly decreases the num-

ber of cell-pairs and early rejects a considerable amount

of false correspondences.

3.4 Motion Kernel

Few neighbors would be considered, if the cell size is

small. This degenerates the performance. However, if
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G1 G2

a1 a2 a3

a4 a a6

a7 a8 a9

b1 b2 b3

b4 b b6

b7 b8 b9

Fig. 4 Basic motion kernel. We consider surrounding cell-
pairs (Ca1b1 , ..., Ca9b9) when computing the motion supports
for the original cell-pair (Cab).

the cell size is big, inaccurate correspondences would

be included. To address this issue, we set the grid size

to be small for accuracy and propose motion kernel for

considering more neighbors.

Fig. 4 shows the basic motion kernel, where we con-

sider additional eight cell-pairs (Ca1b1 , ..., Ca9b9) for

classifying the original cell-pair (Cab). Formally, let ci
land in Cab again. We re-define its neighbors as

Ni = {cj |cj ∈ CA, ci 6= cj}, (11)

where

CA = Ca1 ∪ Ca2 ∪ Ca3 ... ∪ Ca9 . (12)

We re-define its similar neighbors as

Si = {cj |cj ∈ CAB , ci 6= cj}, (13)

where

CAB = Ca1b1 ∪ Ca2b2 ∪ Ca3b3 ... ∪ Ca9b9 . (14)

The basic kernel assumes that the relative rotation be-

tween two images is small. For matching image pairs

with significant rotation changes, we can rotate the ba-

sic kernel, as described in the next section.

3.5 Multi-Scale and Multi-Rotation

To deal with significant scale and rotation changes be-

tween two images, we propose the multi-scale and multi-

rotation solutions in this section.

Multi-Rotation solution. We rotate the basic kernel for

simulating different relative rotations, resulting in total

8 motion kernels, as shown in Fig. 5. The rotation is

often unknown in real-world problems, so we run GMS

algorithm using all motion kernels and collect the best

results, i.e., we find the kernel that results in most cor-

respondences retrieved. The efficacy of multi-rotation

solution is demonstrated in Sec. 4.2.

Fig. 5 Rotated motion kernels. We set the pattern in first
image fixed, and rotate the pattern in the second image in
the clockwise direction, resulting in total 8 motion kernels for
simulating possible relative rotations.

Multi-Scale solution. The relative scale between two

images can be simulated in our grid framework, i.e., we

fix the cell size (cell numbers) of one image and vary

that of the other image. Assume that both images are

divided into n× n cells. We change the cell number of

the second image to be (n·α)×(n·α). Here, we provide 5

candidates for α, including { 12 ,
√
2
2 , 1,

√
2, 2}. Similarly,

we run GMS using all pre-defined relative scales and

collect the best results. Note that we provide only 5 rel-

ative scales to demonstrate that our solution is effective

for solving the scale issue, which is efficient and suffi-

cient for most scenes, as demonstrated in Sec. 4.2 and

Sec. 4.4. However, for more significant scale changes,

we can use more candidates or increase α.

Algorithm 1 Grid-based Motion Statistics
Input: C, S,K {Correspondences, Scale, Kernel}
Output: X {Selected Correspondences}
G1,G2 = GenerateGrids(S); {Fig. 3}
for each Ga ∈ G1 do

Find Gb from G2 with Gab having most matches
CA, CAB , Cab = Search(K,Gab); {Fig. 4, Fig. 5}
τ = α

√
|CA| − 1; {Eqn. 8}

s = |CAB | − 1; {Eqn. 13}
if s > τ then

X = X ∪ Cab;
end if

end for

Shift the gird of the first image by half cell-width in hori-
zontal, vertical, and both directions, and then repeat algo-
rithm more 3 times.
return X

3.6 Algorithm and Limitation

Alg. 1 shows the GMS algorithm, which takes putative

correspondences and the setting for scale and rotation

as input and outputs selected matches. We use the basic

motion kernel and the single equal scale for matching

regular images, e.g., video frames. The multi-scale and
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multi-rotation solutions are used for images with signif-

icant changes in scale and rotation, respectively.

Implementation. We implement the algorithms using

C++ with OpenCV library (Bradski 2000). A single

CPU thread is used currently, but the multi-thread pro-

gramming can be used for accelerating the multi-scale

and multi-rotation solutions. We use 20×20 cells as the

default mode, and we vary the number of cells in the

second image when activating the multi-scale solution.

α = 4 in Eqn. 8 is used for thresholding. The code has

been integrated into the OpenCV library.

Limitation. The limitation of GMS lies in three as-

pects. First, as we assume that image motion is piece-

wise smooth, the performance may degenerate in areas

where the assumption is violated, e.g., image bound-

aries. This issue is not critical because regular pixels

are overwhelmingly more than boundaries. Besides, as

we are not targeting a final correspondence solution but

a set of high-quality hypotheses, the assumption is suf-

ficient for our purpose. To solve this problem, we will

consider using edge detection (Liu et al. 2019) or im-

age segmentation (Cheng et al. 2016; Liu et al. 2018)

techniques in future work. Second, the performance is

limited in visually similar but geographically different

image regions. This issue often occurs in scenes that

have heavy repetitive patterns. We leave the problem

to global geometry estimation algorithms (Kushnir &

Shimshoni 2014), as only local visual information is not

sufficient to address that. Third, as we process data at

the cell-pair level, inaccurate correspondences that lie

the correct cell-pair will remain. These correspondences

are useful in many applications which are not sensitive

to matching accuracy such as Object Retrieval (Philbin
et al. 2007). However, for accuracy-sensitive tasks, e.g.,

geometry estimation, they should be excluded. There-

fore, we propose to run GMS on correspondences se-

lected by RT instead of all putative correspondences

for mitigating the issue. The efficacy of using RT as

pre-processing can be seen in Fig. 7 and Tab. 4.

4 Experiments

We evaluate four aspects of GMS:

– Comprehensive performance characterization on cor-

respondence selection.

– Matching challenging image pairs with significant

relative scale and rotation changes.

– Contribution to the overall performance of feature

matching and epipolar geometry estimation.

– Integration in real-time computer vision applications,

i.e., Visual SLAM here.
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(b) Graffiti (#ASIFT=31199)
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(c) Wall (#SIFT=2748)
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(d) Wall (#ASIFT=58049)
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Fig. 6 Results on pairs with gradually increasing viewpoint
changes. “#” stands for the feature numbers. RT refers to
Lowe’s ratio test (Lowe 2004). GMS and RT take all corre-
spondences as input, while RT-GMS takes the results of RT
as input. Therefore, the Recall of RT is the upper bound for
RT-GMS.

4.1 GMS for Correspondence Selection

To comprehensively evaluate the performance of GMS,

we experiment with different local features and varying

feature numbers. We also examine the accuracy of re-

trieved correspondences using varying error thresholds.

Two challenging datasets (Graffiti and Wall) selected

from VGG (Mikolajczyk & Schmid 2005) are used for

evaluation, which are well-known for significant view-

point changes. Each dataset contains six images, where

the ground truth homography between the first image

to others is provided, resulting in five pairs with in-

creasing difficulty for testing. Recall and Precision are

used as evaluation metrics, where we regard correspon-

dences those distances to the ground truth are smaller

than 10 pixels as correct and others as wrong.
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Fig. 7 Results with varying error thresholds on Graffiti. We
collect all correspondences (ALL) in total 5 pairs for evalua-
tion.

4.1.1 Results on different features

Fig. 6 shows the results on Graffiti and Wall datasets,

where SIFT (Lowe 2004) and ASIFT (Morel & Yu 2009)

are used for generating correspondences, respectively.

We test GMS on both all correspondences and the cor-

respondences selected by Lowe’s ratio test. Here SIFT

is not able to provide sufficient correct correspondences

on very challenging pairs due to significant viewpoint

changes, while ASIFT can. The results show that GMS

gets high recall and precision on correspondences gen-

erated by ASIFT, while the recall degenerates on cor-

respondences generated by SIFT. The reason is that

ASIFT provide sufficient correspondences and GMS can

translate the high feature numbers to high match qual-

ity, as indicated in Eqn. 6, while SIFT correspondences

are quite sparse. However, on SIFT correspondences,

RT-GMS can achieve high performance, although they

are sparse. Note that the Recall of RT is the upper

bound of RT-GMS. This is because the performance of

GMS is also related to the feature quality, as indicated

in Eqn. 6, and the quality of correspondences selected

by RT is higher than that of initial correspondences

in terms of precision. Compared with SIFT-RT, the

most widely used feature matching method as we know,

the proposed SIFT-RT-GMS can get similar recall (i.e.,

similar correspondence numbers) but higher precision.

It has important implications for many computer vision

applications. We show a comparison of both methods in

Tab. 2, where the performance gap is wide on challeng-

ing wide-baseline datasets in terms of epipolar geometry

estimation.
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(c) RT-GMS
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Fig. 8 Results with varying maximum feature numbers on
Graffiti dataset. We randomly pick a subset of detected
ASIFT features in each image for evaluation.

4.1.2 Accuracy of correspondences

Fig. 7 shows the results with varying error thresholds on

Graffiti, where we use all correspondences in Graffiti (5

pairs) for evaluation. Note that regarding the number

of correct correspondences, ALL is the upper bound for

GMS, and RT is the upper bound for RT-GMS. The re-

sults show that ASIFT provides better correspondences

than SIFT (see ALL for comparison). However, when

RT or GMS is applied, the precision on SIFT correspon-

dences is higher than that on ASIFT correspondences,

especially when the error threshold is small, e.g., 1 or

2 pixels. This is because there are many correct but

not accurate correspondences generated by ASIFT and

selected by RT and GMS. These inaccurate correspon-

dences are useful in many applications where the ac-

curacy is not critical, e.g., Object Retrieval (Philbin

et al. 2007). However, they limit the performance of

accuracy-sensitive applications such as epipolar geome-

try estimation. Therefore, we suggest using SIFT-RT-

GMS solution for high accuracy of matching. Note that

using ASIFT is also possible and may lead to a higher

performance, since ASIFT correspondences are gener-

ally better than SIFT correspondences. For example,

(Lin et al. 2017) uses ASIFT features and achieves the

state-of-th-art performance in terms of camera pose es-

timation. However, it uses a highly complicated regres-
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Fig. 9 Robustness to scale & rotation change. GMS-S, GMS-
R, and GMS-SR refer to our method with multi-scale, multi-
rotation, and both them, respectively.

sion method, which consumes huge computational cost

to remove inaccurate correspondences.

4.1.3 Performance with varying feature numbers

Eqn. 6 indicates that the performance of GMS relies on

feature numbers. To understand how feature numbers
impact it, we randomly pick a subset of ASIFT features

with varying maximum feature numbers for evaluation.

Fig. 8 shows the results on Graffiti dataset. It shows

that GMS requires the most features, while the perfor-

mance of RT is less sensitive to feature numbers. RT-

GMS can reduce the number requirement of GMS and

achieves the most accurate matching. Overall, we sug-

gest users trying RT and RT-GMS in scenarios where

feature numbers are limited. Besides, note that the per-

formance of GMS is also related to feature quality. We

show that with the same feature detector (i.e., the same

feature numbers), using better descriptors could also

improve the performance in Sec. 4.4.

4.2 Robustness to Scale & Rotation Change

We use Semper and Venice datasets for testing the ro-

bustness of GMS to rotation and scale changes, respec-

tively. Both datasets are selected from Heinly (Heinly

et al. 2012), which is an extension of VGG (Mikolajczyk

(a) ASIFT-RT-GMS on Graffiti

(b) SIFT-RT-GMS-S on Venice

(c) SIFT-RT-GMS-R on Semper

(d) SIFT-RT-GMS-SR on Boat

Fig. 10 Visual results of GMS. We show matching results on
the most challenging pair of each dataset, where at most 100
correspondences are plotted for clear visualization.

& Schmid 2005) with the same data organization. We

also use Boat dataset for testing, where image pairs

have significant relative changes in both scale and ro-

tation. Fig. 9 shows the results, where we use SIFT

feature (Lowe 2004) for generating putative correspon-

dences and run GMS variants on correspondences se-

lected by RT. It shows that the basic GMS is sensitive to

large scale and rotation changes while using the multi-

scale and multi-rotation solution can improve the per-

formance significantly. Similar to previous results, the

proposed method can achieve similar recall with RT

and higher precision. We show visual results of GMS

in Fig. 10, where the results on the most challenging

pair of each dataset is illustrated. The scale invariance

is critical in the unstructured environment, as the rela-

tive scale of images is unknown. We show that using the

proposed multi-scale solution can significantly improve

the performance for challenging wide-baseline scenarios

in Tab. 4.
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Fig. 11 Runtime of GMS in a single CPU thread. GMS-S
and GMS-R repeat the basic GMS using different settings 5
and 8 times, respectively, so the runtime is linearly increased.
GMS-SR, not shown in this figure, consumes 40 times more
computational cost than the basic GMS. Note that the multi-
scale and multi-rotation solutions could be accelerated by us-
ing multi-threshold programming, since no data dependence
exists in different repeats.

4.3 Runtime of GMS

We evaluate the runtime of GMS with varying fea-

ture numbers on Graffiti dataset using ASIFT features.

Fig. 11 shows the results, where GMS takes about only

2ms in a single CPU thread, even when feature num-

bers reach 50, 000. The multi-scale (GMS-S) and multi-

rotation (GMS-R) variants repeat the basic GMS with

different pre-defined patterns 5 and 8 times, respec-

tively. Therefore, their computational costs are linearly

increased. We do not show GMS-SR in the figure for

clarity. However, its time consuming is apparent, i.e.,

40 times higher than the basic GMS. Note that both

multi-scale and multi-rotation solutions have no data-

dependent in different repeats, so they could be acceler-

ated by using multi-thread programming. Theoretically,

the multi-scale (or rotation) version could achieve the

same speed with the basic GMS, when there are 5 (or

8) CPU threads available.

4.4 GMS for Epipolar Geometry Estimation

We evaluate the proposed method on FM-Bench (Bian

et al. 2019), where correspondences selection methods

are integrated into a classic feature matching and epipo-

lar geometry estimation pipeline (i.e., SIFT, RANSAC,

and the 8-point algorithm), and the overall performance

is compared. The benchmark datasets, metrics, and base-

lines are described below.

Datasets. FM-Bench consists of 4 datasets, including

TUM (Sturm et al. 2012), KITTI (Geiger et al. 2012),

Tanks and Temples (T&T) (Knapitsch et al. 2017), and

a Community Photo Collection (CPC) dataset (Wil-

son & Snavely 2014). The first two datasets are pop-

Table 1 Details of the benchmark dataset.

Datasets #Seq #Images Resolution Baseline Property

TUM 3 5994 480× 640 short indoor scenes

KITTI 5 9065 370× 1226 short street views

T&T 3 922
1080× 2048

wide outdoor scenes
1080× 1920

CPC 1 1615 varying wide internet images

Fig. 12 Sample images of the benchmark datasets.

ular for Visual SLAM testing, which provide indoor

and outdoor videos, respectively. The last two datasets

are widely used for Structure-from-Motion evaluation,

which provides wide-baseline scenarios. Especially, the

CPC dataset is challenging, in which images are col-

lected from the Internet and captured by tourists. 1000

matching image pairs per dataset are randomly picked

by (Bian et al. 2019) for testing. Tab. 1 summarizes the

test dataset, and Fig. 12 shows sample images.

Baselines. We compare with three state-of-the-art cor-

respondence selection methods, including CODE (Lin

et al. 2017), LPM (Ma et al. 2019), LC (Yi et al. 2018)

as strong baselines. CODE leverages the sophisticated

non-linear optimization for finding correct correspon-

dences, and it relies on a self-implemented GPU-ASIFT

feature, which extracts several times more features than

the standard ASIFT (Morel & Yu 2009). LPM explores

neighborhood structures, and LC uses deeply trained

neural networks. Both methods are independent of fea-

tures and use SIFT (Lowe 2004) in the original paper.

Note that the comparison is unfair to our method be-

cause CODE uses ASIFT features and a very compli-

cated solution (1000× slower than GMS).

Implementation details. We use the DoG detector and

SIFT descriptor (Lowe 2004) for generating putative

correspondences. The implementation is from the VLFeat

library (Vedaldi & Fulkerson 2010). We use the default

parameters, which results in average 1082, 1751, 8133,

and 7213 detected features in four datasets (as order

in Fig. 12). The correspondences are pre-processed by

using ratio test (RT), with the threshold being 0.8.

Then we apply the evaluate methods (LPM, LC, and

GMS) for good correspondence selection. We empir-

ically find that using correspondences by RT results

in better performance than using all correspondences

for LC (Yi et al. 2018), although it uses the latter in

the original paper. We use the basic GMS in the first

two SLAM datasets and the multi-scale solution in the

last two SfM datasets, as where images are more un-

structured. The multi-rotation solution is not used since
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Table 2 %Recall of fundamental matrix estimation.

Method
Dataset

TUM KITTI T&T CPC

CODE 62.50 92.50 89.40 51.00

SIFT-RT 57.40 91.70 70.00 29.20

SIFT-RT-LPM 58.90 91.50 80.70 39.40

SIFT-RT-LC 54.10 89.70 76.60 39.40

SIFT-RT-GMS 59.20 91.70 80.90 43.00

Table 3 %Inlier of correspondences after RANSAC.

Method
Dataset

TUM KITTI T&T CPC

CODE 76.95 98.32 89.14 90.16

SIFT-RT 75.33 98.20 75.20 67.14

SIFT-RT-LPM 75.75 98.27 81.62 78.17

SIFT-RT-LC 75.96 99.44 84.01 83.99

SIFT-RT-GMS 76.18 98.58 84.38 85.90

Table 4 Ablation study results (FM %Recall) for the multi-
scale solution and RT pre-processing.

Method
Dataset

TUM KITTI T&T CPC

SIFT-RT-GMS 59.20 91.70 80.90 43.00

without RT 51.9 90.6 73.4 31.4

without Multi-Scale X X 78.6 37.8

Table 5 Results (FM %Recall) of GMS with deep learn-
ing based features. Bold and underlines denote the first and
second performance, respectively.

Method
Dataset

TUM KITTI T&T CPC

CODE 67.50 91.90 92.70 61.80

DoG-HardNet-RT-GMS 68.60 92.10 92.20 60.10

HesAff-HardNet-RT-GMS 66.40 91.80 90.90 60.80

there is no significant image rotation in these datasets.

For CODE (Lin et al. 2017), we directly evaluate the

output correspondences since it is a highly integrated

correspondence system. We use the publicly available

implementation for all methods and use the pre-trained

model by authors for LC.

Metrics. To compare the overall performance of dif-

ferent correspondence systems, we fed their correspon-

dences into a RANSAC-based 8-point estimator (Fis-

chler & Bolles 1981; Hartley 1997) to recover the FM,

and then compare the estimated FM with the ground

truth FM using normalized symmetric geometry dis-

tance (NSGD) (Bian et al. 2019). See the appendix for

details. We then report the success ratio of FM estima-

tion (%Recall), where the NSGD threshold is 0.05, and

we also show the results with varying error thresholds.

What’s more, we report the inlier rate (%Inlier) after
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Fig. 13 FM estimation on wide-baseline datasets. GMS can
outperform recent LC and LPM using the same feature cor-
respondences as input.

RANSAC-based outlier removal for match quality com-

parison. Here inliers refer to matches those distances to

the ground truth epipolar lines are smaller than α ∗ l,
where l stands for the length of image diagonal and

α = 0.003. More details can be found in the appendix

and (Bian et al. 2019).

Experimental results. Tab. 2 shows the recall of FM es-

timation. Fig. 13 shows the results with varying error

thresholds on two wide-baseline datasets. Tab. 3 reports

the inlier rate. All the above results demonstrate that

GMS can show better performance with LC (Yi et al.

2018) and LPM (Ma et al. 2019) using the same feature

correspondences as input, i.e., SIFT-RT (Lowe 2004).

However, our correspondence system is not as good as

the powerful CODE (Lin et al. 2017) system. Compares

with SIFT-RT, our approach can lead to significantly

better results on T&T and CPC datasets, demonstrat-

ing the efficacy of GMS for high-accuracy matching.
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Table 6 Monocular SLAM initialization results on the
KITTI odometry dataset.

Seq Frag
Success Ratio Orders #3D Points

ORB GMS ORB GMS ORB GMS

00 227 0.77 0.95 2.8 1.18 140.44 929.59

01 55 0.11 0.80 4.16 3.88 119.00 519.77

02 233 0.73 0.98 4.28 1.14 124.28 858.01

03 40 0.78 0.98 2.77 1.28 136.97 881.74

04 13 0.69 0.92 6.78 1.08 123.11 875.00

05 138 0.80 0.95 2.65 1.38 132.99 848.60

06 55 0.70 0.96 5.13 1.38 116.62 704.24

07 55 0.73 0.87 2.0 1.31 133.33 882.92

08 203 0.66 0.96 3.65 1.23 126.69 786.53

09 79 0.65 0.98 3.39 1.24 129.94 790.01

10 60 0.75 0.98 5.31 1.32 122.00 843.56

Concerning the runtime, CODE requires several sec-

onds for correspondence selection, while GMS is more

1000 times faster. As the authors reported, LC needs 13

ms on GPU (or 25 ms on CPU) to find good correspon-

dences from 2K putative matches, and LPM can iden-

tify false matches from 1,000 putative correspondences

in a few milliseconds. They are both slower than the

proposed method (Fig. 11).

Effects of RT and Multi-Scale. To understand how our

multi-scale solution and using RT before GMS can ben-

efit the overall performance, we conduct an ablation

study by removing them respectively. The results are

shown in Tab. 4. It shows that the performance is sig-

nificantly decreased without RT. The reason is that in-

accurate correspondences are included, and they limit

the performance of geometry estimation. Besides, the

results on wide-baseline matching datasets (T&T and

CPC) demonstrate that using the proposed multi-scale

solution can significantly improve the performance.

Paring with deep features. As Eqn. 6 indicates that the

performance of GMS is related to feature quality, we

experiment with recently proposed deep learning based

features, including the HardNet (Mishchuk et al. 2017)

descriptor and HessAff (Mishkin et al. 2018) detector.

Specifically, we use DoG (Lowe 2004) and HessAff for

interest point detection, respectively. Then we use use

HardNet to compute descriptors, resulting in two pu-

tative correspondence generation solutions. The pow-

erful CODE is compared as the strong baseline. In-

stead of RANSAC, we use LMedS (Rousseeuw & Leroy

1987) based FM estimator here, as it shows better per-

formance than the former in FM-Bench (Bian et al.

2019). Tab. 5 shows the results, where GMS with deep

features can achieve a competitive performance with

CODE (Lin et al. 2017). The results are remarkable

and have important implications to real-time applica-

tions since these deep features are efficient, while CODE

is several orders of magnitude slower.

4.5 GMS for Monocular SLAM Initialization

Monocular SLAM methods (Mur-Artal et al. 2015) have

to initialize the system before tracking and mapping,

where the initial 3D map is created by triangulating

correspondences to recover depths. Robust initializa-

tion has important implications for a monocular SLAM

system, and high-quality correspondence is the key to

this step. As Visual SLAM systems have high require-

ments for the run-time of methods for the overall real-

time performance, many advanced correspondence ap-

proaches can not be used in this scenario. Fortunately,

GMS is sufficiently fast for this purpose. In this sec-

tion, we show that GMS can be used in the popular

ORB-SLAM system (Mur-Artal et al. 2015) for better

initialization.

Integration. In the initializer of ORB-SLAM, we re-

place the original Bag-of-Words based matching with

the brute-force nearest neighbor matching, and we ap-

ply GMS for selecting good correspondences. The se-

lected matches are used to recover geometry and create

the 3D map by triangulation. For system stability, we

use the default feature detection parameters, i.e., de-

tecting 4K well-distributed ORB features for initializa-

tion in KITTI-like images.

Dataset and metrics. We evaluate methods on the se-

quence 00-10 of KITTI odometry dataset (Geiger et al.

2012). For each sequence, we crop it into non-overlap

fragments, with each fragment containing 20 consecu-

tive frames. The performance averaged over all frag-

ments is reported In each fragment, we measure (a)

whether the initialization is successful ; (b) how quickly

the system is initialized ; and (c) how many 3D points

are generated. Regarding (a), we compare the estimated

camera pose with the ground truth, and those are rec-

ognized as successful if pose error is less than 5 degrees

in both rotation and translation. Regarding (b), we re-

port the order of the first successfully initialized image

in each fragment.

Experimental results. Tab. 6 shows the results, where

we compare with the original initializer. It shows that

the proposed initializer leads to a significantly higher

success ratio, faster initialization, and denser 3D map.

This has a huge impact on monocular SLAM systems,

especially when they work on challenging environments

where previous solutions fail to provide reliable corre-

spondences for initialization. The proposed method can

mitigate this issue and enable the use of SLAM systems

in more real-world scenarios.

5 Conclusion

This paper presents a fast correspondence selection al-

gorithm that we termed Grid-based Motion Statistics
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(GMS). It can effectively separate true correspondences

from false ones at high speed by leveraging the mo-

tion smoothness constraint. Comprehensive experimen-

tal results demonstrate its robustness in different envi-

ronments. We also show that it advances the feature

matching and geometry estimation. Moreover, we plug

GMS into the Monocular ORB-SLAM system for ini-

tialization, demonstrating its great potential to real-

time applications. The code has been released and in-

tegrated into the OpenCV library.
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Appendix

Normalized SGD. We use the NSGD (Bian et al. 2019)

to measure the geometric distance between two fun-

damental matrices (FMs), which is an extension of the

SGD error (Zhang 1998). The method generates virtual

correspondences using two models, and crossly com-

putes the distance of correspondence to the epipolar

line generated by the other model. The results are sym-

metrical, i.e., the error from F1 to F2 is equal to the

error from F2 to F1. For generalization in different res-

olution images, we rescale the error to the range (0,1)

by dividing the length of image diagonal.

FM Ground truth. The fundamental matrix between an

image pair can be derived from the camera intrinsic and

extrinsic parameters. The ground-truth camera param-

eters are provided in TUM and KITTI datasets, while

they are unknown in T&T and CPC datasets. We derive

ground-truth camera parameters for the latter by recon-

structing image sequences using the COLMAP (Schon-

berger & Frahm 2016) library, as in (Ranftl & Koltun

2018; Yi et al. 2018). Note that the SfM pipeline rea-

sons globally about the consistency of 3D points and

cameras, leading to accurate estimates with an average

reprojection error below one pixel.


