
DEL: Deep Embedding Learning for Efficient Image Segmentation

Yun Liu1, Peng-Tao Jiang1, Vahan Petrosyan2,
Shi-Jie Li1, Jiawang Bian3, Le Zhang4, Ming-Ming Cheng1∗

1 Nankai University
2 KTH Royal Institute of Technology

3 University of Adelaide
4 Advanced Digital Sciences Center

nk12csly@mail.nankai.edu.cn, cmm@nankai.edu.cn

Abstract
Image segmentation has been explored for many
years and still remains a crucial vision problem.
Some efficient or accurate segmentation algorithms
have been widely used in many vision applications.
However, it is difficult to design a both efficient
and accurate image segmenter. In this paper, we
propose a novel method called DEL (deep embed-
ding learning) which can efficiently transform su-
perpixels into image segmentation. Starting with
the SLIC superpixels, we train a fully convolutional
network to learn the feature embedding space for
each superpixel. The learned feature embedding
corresponds to a similarity measure that measures
the similarity between two adjacent superpixels.
With the deep similarities, we can directly merge
the superpixels into large segments. The evaluation
results on BSDS500 and PASCAL Context demon-
strate that our approach achieves a good trade-
off between efficiency and effectiveness. Specifi-
cally, our DEL algorithm can achieve comparable
segments when compared with MCG but is much
faster than it, i.e. 11.4fps vs. 0.07fps.

1 Introduction
Image segmentation aims to partition an image into large
perceptual regions, where pixels within each region usually
belong to the same visual object, object part or large back-
ground region with tiny feature difference, e.g. color, gra-
dient, texture, and intensity. Image segmentation has been
widely used in mid-level and high-level vision tasks, such as
object proposal generation [1; 2], tracking [3], object detec-
tion/recognition [4], semantic segmentation [5], and so on.
This technique has been studied for many years, but still re-
mains a main challenge in computer vision.

In general, image segmentation addresses two aspects, the
reliability of segmentation results and efficiency for applica-
tions. An appropriate segmented image can be used as in-
put to significantly improve the performance of many vision

∗M.M. Cheng is the corresponding author.

tasks. Furthermore, the computational time and memory con-
sumption determine whether it is suitable for many practical
applications or not, because image segmentation is often used
as a preprocessing step in other vision applications. However,
it is difficult for existing methods to balance the segmenta-
tion accuracy and computational time. Although MCG [1]
and gPb [6] can generate high-quality segments, they are too
slow to be applied in time-sensitive tasks. The running time
of EGB [7] is nearly proportional to the number of image pix-
els, so it is very fast. But it suffers poor accuracy especially
on the region evaluation metric and thus can not satisfy to-
day’s vision tasks. HFS [8] can perform real-time segmenta-
tion. However, the segmentation results are not satisfactory,
especially on the region evaluation metric. It is difficult to
design an ideal algorithm that can simultaneously satisfy the
requirements of effectiveness and efficiency.

Similar but slightly different from image segmentation, su-
perpixel generation usually refers to an oversegmentation. It
segments an input image into small, regular and compact re-
gions, which is distinct from the large perceptual regions gen-
erated by image segmentation techniques. Oversegmentation
usually has strong boundary coherence, and the number of
produced superpixels can be easy to control. Since superpixel
methods are usually designed to generate small segments, it
is inappropriate to directly use them to generate large regions.
However, superpixel algorithms provide a good start for im-
age segmentation.

In this paper, we aim to design an image segmentation al-
gorithm that can make a good trade-off between efficiency
and effectiveness. Considering the efficiency, our effort starts
with a fast superpixel generation method, the GPU version of
SLIC [9; 10]. In the past few years, convolutional neural net-
works have pushed the boundaries of many computer vision
tasks. Since deep features can represent much richer infor-
mation than hand-crafted features, we train a fully convolu-
tional network to learn the deep feature embedding space that
encodes the deep representation of each superpixel. We intro-
duce a deep embedding metric that converts the feature em-
bedding vectors of adjacent superpixels to a similarity value.
Each similarity value represents the probability that two ad-
jacent superpixels belong to the same region. By this way,
we can train the deep embedding space end-to-end to learn

the similarity between each pair of superpixels. A novel net-
work that combines the features of fine details from bottom
sides and high-level information from top sides is proposed
for the embedding learning. We merge the adjacent super-
pixels into large image segments if the learned similarities
between them are larger than a threshold. This simple merg-
ing operation can achieve better performance than HFS’s hi-
erarchical merging due to the powerful representation of deep
features.

We conduct extensive experiments on BSDS500 [6] and
PASCAL Context [11] datasets to evaluate the proposed im-
age segmentation algorithm. To evaluate our algorithm in ap-
plications, we apply our segmentation results to object pro-
posal generation on the PASCAL VOC2007 dataset [12]. The
evaluation results demonstrate that our algorithm achieves a
good trade-off between efficiency and effectiveness. Specif-
ically, our proposed DEL can achieve comparable segmen-
tation results when compared with state-of-the-art methods,
while much faster than them, e.g. 11.4fps of DEL vs. 0.07fps
of MCG. This means DEL has the potential to be used in
many practical applications. The code of this paper is avail-
able at https://github.com/yun-liu/del.

1.1 Related Work
In the past several decades, researchers have contributed lots
of useful works to this field. Due to the limitation of space,
we only review some typical algorithms here. Shi et al. [13]
viewed image segmentation as a graph partitioning problem.
A novel Normalized Cut criterion was proposed to measure
both the total similarity within each segment and the total dis-
similarity between different segments. Comaniciu et al. [14]
proposed Mean Shift, based on the old pattern recognition
procedure of mean shift. Felzenszwalb et al. [7] proposed
an efficient graph based algorithm, EGB. The edge-based
method, gPb [6], combines multiscale local features and spec-
tral clustering to predict edges and then converts these edges
to a segmentation using an oriented watershed transform al-
gorithm. Pont-Tuset et al. [1] combined multiscale hierarchi-
cal regions to acquire accurate segmentation (MCG).

With the development of superpixel generation [9], some
methods attempt to start with superpixels and then merge
these superpixels into perceptual regions. ISCRA [15] uses
gPb to generate high-quality superpixels. A dissimilar-
ity score is learned for adjacent superpixels using various
features, including color, texture, geometric context, SIFT,
shape, and boundary. Cheng et al. [8] firstly built a real-time
image segmentation system by a hierarchical merging of su-
perpixels using carefully selected parallelizable features. The
combination weights of selected features are retrained at each
merging stage. Our proposed method falls into this category,
too. But our method uses a deep convolutional neural network
to extract powerful deep representation for this task, and thus
can obtain better perceptual regions. We will introduce our
method in detail in the next section.

2 Our Approach
Our approach starts with SLIC [9] superpixels. We first train
a deep network to learn similarities between neighboring su-
perpixels, and then directly merge them using the learned

similarities. In this section, we will describe our algorithm’s
five components in detail, which are superpixel generation,
feature embedding learning, network architecture, superpixel
merging, and implementation details in order.

2.1 Superpixel Generation
Image segmentation algorithms group pixels into large per-
ceptual regions, where pixels in the same region have greater
similarities than pixels in different regions. However, when
grouping pixels using similarity distance metrics, the algo-
rithms usually consume too much time because the running
time of the algorithm is highly related to the number of pix-
els in an image. Furthermore, the algorithm lacks robust-
ness when directly merging pixels. Considering these two
aspects, our algorithm starts with a fast superpixel generation
method, SLIC [9], which is based on the k-means clustering
algorithm. The number of superpixels is much less than the
original pixels, so this makes it possible to improve efficiency.
One superpixel is a small region, and thus more robust than
single pixels.

In general, superpixel algorithms cannot be directly ap-
plied to image segmentation because large perceptual regions
are usually not regular and related to the global informa-
tion in an image, unlike superpixels. Inspired by HFS that
starts with superpixels and uses carefully designed features
to merge them hierarchically, our algorithm learns a similar-
ity metric between adjacent superpixels. SLIC is one widely
used superpixel algorithm among many state-of-the-art algo-
rithms due to its simplicity and efficiency. We choose the
GPU version of SLIC, gSLIC[10], as the start of our method.
In order to balance the running time and the boundary adher-
ence of the generated superpixels, we control each superpixel
to contain about 64 pixels. Suppose we have M superpix-
els for an image I now. The set of generated superpixels is
denoted as S = {S1, S2, · · · , SM}, Si = {1, 2, · · · , |I|}|Si|.

2.2 Feature Embedding Learning
After generating superpixels, we start to train a deep con-
volutional neural network to learn the feature embedding
space. As shown in Figure 1, we perform pooling opera-
tion on the feature embedding space to get feature vectors
~v = {~v1, ~v2, ~v3, · · · , ~vM} corresponding to the superpixels.
Each feature vector is the average of the learned deep feature
maps in the corresponding region of the superpixel. It can be
formulated as follows:

~vi =
1

|Si|
∑
k∈Si

~xk, (1)

where ~xk denotes the feature vector within the region of the i-
th superpixel. We call this pooling operation superpixel pool-
ing. Each feature embedding vector ~vi has 64 dimensions in
our design. The backwards function of the superpixel pooling
layer with respect to input ~xk can be written as

∂L

∂~xk
=

∑
Si∈S

1{k∈Si} ·
1

|Si|
· ∂L
∂~vi

, (2)

in which 1{k∈Si} is an indicator function.

Conv

Layers

Image

Superpixel
Feature Embedding Space

Superpixel Pooling

Superpixel Feature Vectors

𝑣𝑗

𝑣𝑙

𝑣𝑚

𝐾

𝑣𝑘

Merge

Figure 1: The pipeline of our DEL image segmentation algorithm.

We design a distance metric to measure the similarities be-
tween adjacent superpixels. The proposed distance metric can
be formulated as

dij =
2

1 + exp(‖~vi − ~vj‖1)
. (3)

The similarity di,j ranges in [0, 1]. It is close to 1 when vi
and vj are similar, and is close to 0 when vi and vj are ex-
tremely different. Since the distance metric is established, we
consider the similarity loss function as follows:

L = −
∑
Si∈S

∑
Sj∈R

[(1− α) · lij · log(dij)

+ α · (1− lij) · log(1− dij)],
(4)

where lij = 1 denotes vi and vj belongs to the same region,
and lij = 0 denotes vi and vj belongs to different regions. R
is the set of adjacent superpixels of the superpixel Si. α =
|Y+|/|Y |, denotes the proportion of the pairs of superpixels
belonging to the same regions in the ground truth. We use
this parameter to balance the positive samples and negative
samples.

Using this similarity loss, we can learn the feature embed-
ding space in an end-to-end manner. The similarities between
the pairs of superpixels in the same ground truth segments are
expected to be larger than the similarities of the pairs of su-
perpixels belonging to different segments. In the next step,
we will use the learned similarity distance metric to merge
these superpixels.

2.3 Network Architecture
In this section, we introduce our network architecture which
is used to learn the feature embedding space. Our network
is built based on the VGG16 net [16] and inspired by recent
works [17; 18]. The convolutional layers in VGG16 can be
divided into five convolution stages by the pooling layers. As
shown in Figure 2, we cut the pool5 layer and the fully con-
nected layers of the VGG16 Net. Because of the low resolu-
tion of the side output from the conv5 stage, we modify the
stride of pool4 from 2 to 1. The hole algorithm [19] is used to
keep receptive field sizes of convolutional layers in the fifth
stage the same as the original VGG16 network. We consider
that the learned features become coarser and coarser when
the network goes deep. The fine features contain more detail
information meanwhile the coarse features represent global
information. The features from five stages are concatenated

𝟑 × 𝟑 𝒄𝒐𝒏𝒗, 𝟏 × 𝟏 𝒄𝒐𝒏𝒗,
𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆

𝟑 × 𝟑 𝒄𝒐𝒏𝒗

Image Superpixel

Superpixel Pooling

conv1

conv2

conv3

conv4

conv5

Similarity Loss

Feature Vectors

𝟏 × 𝟏 𝒄𝒐𝒏𝒗

Feature Embedding Space

Figure 2: The network architecture for feature embedding learning.

to combine the coarse and global information with the fine
and local information.

Specifically, we connect a 3× 3 convolution layer on side-
1-5 with 32, 64, 128, 256, 256 output channels, respectively.
After the 3× 3 convolution layer, a 1× 1 convolution layer is
connected with 32, 64, 64, 128, 128 output channels for side-
1-5, respectively. Since the feature scales of different convo-
lution stages are different, direct concatenating features from
multiple stages will make features from some stages no sense.
Therefore, we normalize the responses of different stages us-
ing the L2 normalization technique introduced in [20]. After
the normalization, we concatenate the feature maps from all
sides and a 3× 3 convolution layer with 256 output channels
is followed. Finally, we get the 64-dimension feature embed-
ding space using a convolutional layer with kernel size 1× 1.
As illustrated in section3.2, we pool the feature embeddings
to feature vectors corresponding to the superpixels, then use
the proposed similarity loss to train the network.

2.4 Superpixel Merging
The dissimilarities between adjacent superpixels learned by
the deep neural network are used to merge the superpix-
els into perceptual regions. A threshold is set to determine
whether two adjacent superpixels should be merged or not.
The pseudo code of superpixel merging is displayed in Algo-
rithm 1. For the efficiency of merging, we use the data struc-
ture of universe in EGB [7]. Unlike the hierarchical merging
strategy in HFS [8], we perform merging operation only once.
HFS uses a linear combination of some low-level features and

retrains the combinatorial weights at each merging stage. The
single-stage merging of DEL can also outperform HFS by a
large margin. We will show the details in the experiment part.

Algorithm 1 Superpixel merging algorithm of DEL

Input: Image I , dissimilarity f = (1 − d), threshold T ,
superpixels S = {S1, S2, · · · , SM}
Construct R = {R1, R2, · · · , RM}, in which Ri is the set
of adjacent superpixels of Si

for each Si ∈ S do
for each Sj ∈ Ri do

if fi,j < T : then
Si ← Si ∪ Sj ,S ← S\Sj

UpdateR
end if

end for
end for
Output: Segmentation S

2.5 Implementation Details
Our network is based on Caffe, which is a widely used deep
learning framework. Generally speaking, the segmented re-
gions usually refer to the visual objects, object parts or the
partial background. Therefore, we firstly pretrain our network
for the semantic segmentation task on the SBD [21] dataset
to acquire semantic information for the network. The net-
work is tuned by replacing the feature embedding space with
a classification layer for semantic segmentation task.

We then fine-tune the pretrained model for the feature em-
bedding space. We use the stochastic gradient descent (SGD)
technique to optimize the neural network. The basic learning
rate is set to 1e-5. We use a weight decay of 0.0002 and batch
size of 5. The learning rate policy of step is used, and we
totally run SGD for 10000 iterations with step size of 8000.
The learning rate of the feature embedding layer is set larger
than the basic convolutional layers as suggested in deep met-
ric learning.

Data augmentation has been proven to be important for
deep learning. When training our feature embedding model
on the BSDS500 dataset [6] that consists of 300 trainval im-
ages and 200 test images, we augment the trainval set. The
images are rotated to 16 direction angles and also flipped
at each angle. We then crop the largest rectangle from the
transformed images, resulting in 9600 training images. When
training on the PASCAL Context dataset that is divided into
7605 trainval images and 2498 test images, we only flip the
trainval images for training because the number of images in
this set is adequate.

3 Experiments
In this section, we first evaluate our DEL method on the
BSDS500 dataset [6] and the PASCAL Context dataset [11]
for image segmentation. In order to evaluate the segmenta-
tion quality in applications, we use the segmented regions to
generate object proposals on the PASCAL VOC2007 dataset
[12]. For the evaluation of image segmentation, we use the
publicly available benchmark SEISM [22]. Optimal dataset

Methods Boundary Region Time (s)ODS OIS ODS OIS
DEL-Max 0.703 0.738 0.323 0.389 0.088

DEL-conv5 0.667 0.695 0.278 0.343 0.070
DEL-EGB 0.662 0.686 0.305 0.325 0.091

DEL 0.704 0.738 0.326 0.397 0.088
DEL-C 0.715 0.745 0.333 0.402 0.165

Table 1: The ablation study on BSDS500 dataset.

scale (ODS) usually refers to the best performance when se-
lecting optimal parameters for the whole dataset, while opti-
mal image scale (OIS) refers to the best performance when
selecting special parameters for each image. We report the
boundary F-measure (Fb) and region F-measure (Fop) at ODS
and OIS. For the evaluation of object proposals, we report the
detection recall (DR) when varying the number of proposals.
We compare our DEL with some state-of-the-art segmenta-
tion algorithms, including EGB [7], Mean Shift [14], NCuts
[23], gPb-UCM [6], MCG [1], SLIC [9], GPU-SLIC [10],
and HFS [8]. In addition to the GPU version of SLIC, we
also use the CPU version of SLIC to generate superpixels for
DEL, and we call this variant DEL-C.

3.1 Ablation Study
BSDS500 [6] is the standard benchmark for image segmen-
tation, oversegmentation, and edge detection. We use this
dataset to evaluate the different choices of each DEL’s com-
ponent. The first variant, which is denoted as DEL-Max, re-
places the average operation with maximum operation in su-
perpixel pooling while keeping other components as the same
with DEL. The second variant, DEL-conv5, only uses the
final convolutional layer (conv5) of VGG16 net. The third
variant, DEL-EGB, applies the merging strategy of EGB by
viewing each superpixel as a node in the graph partitioning
problem.

The evaluation results are summarized in Table 1. Com-
pared with the original DEL, these variants achieve worse
performance. It demonstrates the initial choices of the DEL’s
components are reasonable. For example, our proposed net-
work architecture in DEL can capture both fine-level and
coarse-level information, while the naive design of DEL-
conv5 only uses coarse-level information. Thus DEL is much
better than DEL-conv5. Moreover, EGB seems to be useless
for superpixel merging. Maximum pooling is slightly worse
than average pooling. It conforms to our intuition that maxi-
mum and average pooling usually have similar effects.

3.2 Evaluation on BSDS500 Dataset
Since ODS F-measure is the most important metric for seg-
mentation, we show the ODS F-measure vs. running time in
Figure 3. Although our proposed DEL does not achieve the
best performance, it achieves a good trade-off between effi-
ciency and effectiveness. Among these methods, the fastest
one is HFS [8] which can run at real time. However, it suffers
poor performance, especially for the region evaluation met-
ric. Thus it can not satisfy today’s vision tasks despite its
high speed. SLIC [9] and GPU-SLIC [10] seem to strug-
gle on image segmentation. It fits our intuition that over-

Time in Seconds
10 -2 10 -1 10 0 10 1 10 2

 F
b M

ea
su

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
BSDS500 - Boundary Measure (Fb)

DEL (ours)
DEL-C (ours)
HFS (CUDA & C++)
EGB (2004 IJCV, C++)
SLIC (2012 TPAMI, C++)
GPU-SLIC (2015 arXiv, CUDA)
Mean Shift (2002 TPAMI, C++)
NCuts (2005 CVPR, Matlab & C++)
gPb-UCM (2011 TPAMI, Matlab & C++)
MCG (2017 TPAMI, MATLAB & C++)

Time in Seconds
10 -2 10 -1 10 0 10 1 10 2

 F
op

 M
ea

su
re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
BSDS500 - Region Measure (Fop)

DEL (ours)
DEL-C (ours)
HFS (CUDA & C++)
EGB (2004 IJCV, C++)
SLIC (2012 TPAMI, C++)
GPU-SLIC (2015 arXiv, CUDA)
Mean Shift (2002 TPAMI, C++)
NCuts (2005 CVPR, Matlab & C++)
gPb-UCM (2011 TPAMI, Matlab & C++)
MCG (2017 TPAMI, MATLAB & C++)

Figure 3: The evaluation results on BSDS500 dataset. Left: Boundary measure. Right: Region measure.

Time in Seconds
10 -2 10 -1 10 0 10 1 10 2

 F
b M

ea
su

re

0

0.1

0.2

0.3

0.4

0.5

0.6
PASCAL Context - Boundary Measure (Fb)

DEL (ours)
DEL-C (ours)
HFS (CUDA & C++)
EGB (2004 IJCV, C++)
SLIC (2012 TPAMI, C++)
GPU-SLIC (2015 arXiv, CUDA)
Mean Shift (2002 TPAMI, C++)
NCuts (2005 CVPR, Matlab & C++)
MCG (2017 TPAMI, MATLAB & C++)

Time in Seconds
10 -2 10 -1 10 0 10 1 10 2

 F
op

 M
ea

su
re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
PASCAL Context - Region Measure (Fop)

DEL (ours)
DEL-C (ours)
HFS (CUDA & C++)
EGB (2004 IJCV, C++)
SLIC (2012 TPAMI, C++)
GPU-SLIC (2015 arXiv, CUDA)
Mean Shift (2002 TPAMI, C++)
NCuts (2005 CVPR, Matlab & C++)
MCG (2017 TPAMI, MATLAB & C++)

Figure 4: The evaluation results on PASCAL Context dataset. Left: Boundary measure. Right: Region measure.

segmentation methods are not suitable for image segmenta-
tion. The improvement from GPU-SLIC/SLIC to DEL/DEL-
C demonstrates the effectiveness of our deep embedding fea-
ture learning paradigm. It is interesting to find that GPU-
SLIC performs slightly worse than SLIC, and DEL also per-
forms slightly worse than DEL-C. But we choose DEL as the
default setting because of the efficiency of GPU-SLIC despite
its poor performance. Replacing SLIC with more accurate su-
perpixel generation methods may lead to better performance.
DEL provides a converter from superpixels to segmentation.
New superpixel techniques will benefit image segmentation
in this way. Although MCG [1] achieves accurate results,
their low speeds limit their application in many vision tasks.
Note that there is no straightforward GPU implementation of
MCG, because MCG is not a parallelizable algorithm.

The numeric comparison is summarized in Table 2. The
ODS Fb and Fop of DEL is 5.2% and 7.7% higher than HFS,
respectively. For speed, HFS achieves 41.7fps compared with
the 11.4fps of DEL. The accuracy improvement from HFS
to DEL is important for many applications. Compared with
EGB, DEL achieves better performance both in accuracy and
speed. DEL can generate comparable results with state-of-
the-art performance, but is much faster. Thus DEL achieves

Methods Boundary Region Time (s)ODS OIS ODS OIS
HFS 0.652 0.686 0.249 0.272 0.024
EGB 0.636 0.674 0.158 0.240 0.108
SLIC 0.529 0.565 0.146 0.182 0.085

GPU-SLIC 0.522 0.547 0.085 0.132 0.007
MShift 0.601 0.644 0.229 0.292 4.95
NCuts 0.641 0.674 0.213 0.270 23.2

gPb-UCM 0.726 0.760 0.348 0.385 86.4
MCG 0.747 0.779 0.380 0.433 14.5
DEL 0.704 0.738 0.326 0.397 0.088

DEL-C 0.715 0.745 0.333 0.402 0.165

Table 2: The evaluation results on BSDS500 dataset.

a good trade-off between effectiveness and efficiency. This
makes DEL suitable for many high-level vision tasks. We
display some qualitative comparisons in Figure 6. We can see
that DEL can adapt to complex scenarios and produce more
accurate and regular segmented regions.

3.3 Evaluation on PASCAL Context Dataset
PASCAL Context dataset [11] contains 540 categories for se-
mantic segmentation. Due to the pixel-wise labeling of the

Methods Boundary Region Time (s)ODS OIS ODS OIS
HFS 0.472 0.495 0.223 0.231 0.026
EGB 0.432 0.454 0.198 0.203 0.116
SLIC 0.359 0.409 0.149 0.160 0.099

GPU-SLIC 0.322 0.340 0.133 0.157 0.010
MShift 0.397 0.406 0.204 0.214 5.32
NCuts 0.380 0.429 0.219 0.285 33.4
MCG 0.554 0.609 0.356 0.419 17.05
DEL 0.563 0.623 0.349 0.420 0.108

DEL-C 0.570 0.631 0.359 0.429 0.193

Table 3: The evaluation results on PASCAL Context dataset.

#WIN
200 400 600 800 1000

R
ec

al
l a

t I
oU

 th
re

as
ho

ld
 0

.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Recall at IoU above 0.7

MTSE-EGB
MTSE-DEL

Figure 5: The evaluation of object proposals on PASCAL VOC2007
dataset.

whole image, it can be used to evaluate image segmentation
methods. The semantic labeling is converted to ground truth
segmentation regions by connectivity labeling. We train our
model on the trainval set and test on the test set. Since there
are more test images, this dataset is more challenging than
BSDS500.

We summarize the evaluation results in Figure 4. DEL
and DEL-C achieve better performance than MCG. More-
over, DEL is about 160 times faster than MCG. One can see
that DEL has a good trade-off between accuracy and run-
time. We list numeric results in Table 3. DEL is 9.1% and
12.6% higher than HFS on boundary metric and region met-
ric, respectively. This indicates that our learned deep fea-
tures are more effective than the hand-crafted features used
in HFS. Thus this work is a good start to adopt deep features
for generic image segmentation.

3.4 Object Proposal Generation
Object proposal generation is necessary for a series of mid-
level and high-level vision tasks such as object detection [24]
and instance semantic segmentation [25]. Many proposal
generation algorithms have been presented, and a consider-
able portion of these methods are based on image segmenta-
tion. To evaluate our proposed DEL in practical applications,
we apply it to object proposal generation. MTSE [26] uses the
segmented regions of EGB to refine the locations of existing
proposals generated by other proposal generation methods.
As shown in [26], the BING algorithm [27] has the most sig-

Figure 6: Some qualitative comparisons. The first column displays
original images from BSDS500 dataset. The last four columns show
the results generated by EGB, HFS, MCG, and our DEL method,
respectively.

nificant improvement in performance when MTSE is used as
a post-processing step. Thus we replace EGB in MTSE with
our DEL to refine the bounding boxes produced by BING.
We show the detection recall with IoU overlap 0.7 versus the
number of proposals in Figure 5. One can see that MTSE has
significant improvement with our DEL segmentation. More
experiments of applications are out of scope of this paper,
but the proposal evaluation demonstrates the effectiveness of
DEL in practical applications.

4 Conclusion
In this paper, we propose a deep learning based image seg-
mentation algorithm. Specifically, We first use the fast SLIC
algorithm to generate superpixels of an input image. Then,
the deep embedding feature space that encodes high-level
and low-level representation of each superpixel is learned.
We propose a similarity metric to convert the learned embed-
ding vector to a similarity value. A simple superpixel merg-
ing is performed to obtain perceptual regions according to
the similarity values. Our proposed DEL method achieves a
good trade-off between efficiency and effectiveness. It makes
DEL have the potential to be applied to many vision tasks.
Applying DEL to object proposal generation, the quality of
generated proposals is significantly improved. In the future,
we plan to explore DEL in other applications such as [1; 3;
4].

Acknowledgments
This research was supported by NSFC (NO. 61620106008,
61572264), Huawei Innovation Research Program, and Fun-
damental Research Funds for the Central Universities.

References
[1] J. Pont-Tuset, P. Arbeláez, J. T. Barron, F. Marques, and

J. Malik, “Multiscale combinatorial grouping for im-
age segmentation and object proposal generation,” IEEE
TPAMI, vol. 39, no. 1, pp. 128–140, 2017.

[2] Z. Zhang, Y. Liu, X. Chen, Y. Zhu, M.-M. Cheng,
V. Saligrama, and P. H. Torr, “Sequential optimization
for efficient high-quality object proposal generation,”
IEEE TPAMI, 2017.

[3] S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel
tracking,” in IEEE ICCV. IEEE, 2011, pp. 1323–1330.

[4] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman,
“Blocks that shout: Distinctive parts for scene classifi-
cation,” in CVPR, 2013, pp. 923–930.

[5] C. Farabet, C. Couprie, L. Najman, and Y. LeCun,
“Learning hierarchical features for scene labeling,”
IEEE TPAMI, vol. 35, no. 8, pp. 1915–1929, 2013.

[6] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Con-
tour detection and hierarchical image segmentation,”
IEEE TPAMI, vol. 33, no. 5, pp. 898–916, 2011.

[7] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient
graph-based image segmentation,” IJCV, vol. 59, no. 2,
pp. 167–181, 2004.

[8] M.-M. Cheng, Y. Liu, Q. Hou, J. Bian, P. Torr, S.-M. Hu,
and Z. Tu, “HFS: Hierarchical feature selection for effi-
cient image segmentation,” in ECCV. Springer, 2016,
pp. 867–882.

[9] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
and S. Süsstrunk, “SLIC superpixels compared to state-
of-the-art superpixel methods,” IEEE TPAMI, vol. 34,
no. 11, pp. 2274–2282, 2012.

[10] C. Y. Ren, V. A. Prisacariu, and I. D. Reid, “gSLICr:
SLIC superpixels at over 250hz,” arXiv preprint
arXiv:1509.04232, 2015.

[11] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee,
S. Fidler, R. Urtasun, and A. Yuille, “The role of context
for object detection and semantic segmentation in the
wild,” in IEEE CVPR, 2014, pp. 891–898.

[12] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL Visual Ob-
ject Classes Challenge 2007 (VOC2007) Results,” 2007.

[13] J. Shi and J. Malik, “Normalized cuts and image seg-
mentation,” IEEE TPAMI, vol. 22, no. 8, pp. 888–905,
2000.

[14] D. Comaniciu and P. Meer, “Mean Shift: A robust ap-
proach toward feature space analysis,” IEEE TPAMI,
vol. 24, no. 5, pp. 603–619, 2002.

[15] Z. Ren and G. Shakhnarovich, “Image segmentation by
cascaded region agglomeration,” in IEEE CVPR, 2013,
pp. 2011–2018.

[16] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014.

[17] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai,
“Richer convolutional features for edge detection,” in
IEEE CVPR. IEEE, 2017, pp. 3000–3009.

[18] Y. Liu, M.-M. Cheng, J. Bian, L. Zhang, P.-T. Jiang,
and Y. Cao, “Semantic edge detection with diverse deep
supervision,” arXiv preprint arXiv:1804.02864, 2018.

[19] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
and A. L. Yuille, “Semantic image segmentation with
deep convolutional nets and fully connected CRFs,” in
ICLR, 2015.

[20] W. Liu, A. Rabinovich, and A. C. Berg, “ParseNet:
Looking wider to see better,” in ICLR, 2016.

[21] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and
J. Malik, “Semantic contours from inverse detectors,”
in IEEE ICCV. IEEE, 2011, pp. 991–998.

[22] J. Pont-Tuset and F. Marques, “Supervised evaluation
of image segmentation and object proposal techniques,”
IEEE TPAMI, vol. 38, no. 7, pp. 1465–1478, 2016.

[23] T. Cour, F. Benezit, and J. Shi, “Spectral segmentation
with multiscale graph decomposition,” in IEEE CVPR,
vol. 2. IEEE, 2005, pp. 1124–1131.

[24] R. Girshick, “Fast R-CNN,” in IEEE ICCV, 2015, pp.
1440–1448.

[25] A. Arnab and P. H. Torr, “Pixelwise instance segmenta-
tion with a dynamically instantiated network,” in IEEE
CVPR, 2017, pp. 441–450.

[26] X. Chen, H. Ma, X. Wang, and Z. Zhao, “Improving
object proposals with multi-thresholding straddling ex-
pansion,” in IEEE CVPR, 2015, pp. 2587–2595.

[27] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “BING:
Binarized normed gradients for objectness estimation at
300fps,” in IEEE CVPR, 2014, pp. 3286–3293.

