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Abstract

Transformer-based methods have exhibited remarkable
potential in single image super-resolution (SISR) by effec-
tively extracting long-range dependencies. However, most
of the current research in this area has prioritized the de-
sign of transformer blocks to capture global information,
while overlooking the importance of incorporating high-
frequency priors, which we believe could be beneficial.
In our study, we conducted a series of experiments and
found that transformer structures are more adept at cap-
turing low-frequency information, but have limited capacity
in constructing high-frequency representations when com-
pared to their convolutional counterparts. Our proposed
solution, the cross-refinement adaptive feature modulation
transformer (CRAFT), integrates the strengths of both con-
volutional and transformer structures. It comprises three
key components: the high-frequency enhancement resid-
ual block (HFERB) for extracting high-frequency informa-
tion, the shift rectangle window attention block (SRWAB)
for capturing global information, and the hybrid fusion
block (HFB) for refining the global representation. Our
experiments on multiple datasets demonstrate that CRAFT
outperforms state-of-the-art methods by up to 0.29dB while
using fewer parameters. The source code will be made
available at: https://github.com/AVC2-UESTC/
CRAFT-SR.git.

1. Introduction
Single image super-resolution (SISR) has garnered sig-

nificant attention in recent years, owing to its promising

applications across diverse domains, such as surveillance

video and medical image enhancement [31, 10], old im-

age reconstruction [21, 17], and efficient image transmis-

sion [47]. Despite its practical value, SISR remains an ill-

posed problem, given the existence of multiple solutions for

a given low-resolution (LR) image. To tackle this challenge,
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a multitude of classical approaches have been proposed, in-

cluding A+ [36], SC [41], and ANR [35]. However, these

methods exhibit limitations in their performance, primarily

attributed to their constrained model capacities.

In recent years, deep learning has experienced significant

growth and demonstrated remarkable success in SISR [7,

20, 45, 22]. Prior research efforts have introduced resid-

ual and dense connectives to facilitate the stacking of deep

convolutional neural networks (CNNs) [16, 37], while oth-

ers [46, 40, 29, 30] have leveraged attention mechanisms

to enhance performance. Notably, the emergence of trans-

former architectures has demonstrated their efficacy in cap-

turing long-range dependencies and attaining state-of-the-

art performance [21, 6, 4, 18, 25]. Despite these advance-

ments, these works have mainly focused on designing trans-

former blocks to obtain global information and overlooked

the potential of incorporating high-frequency priors [32, 8]

to further bolster performance in SISR. Additionally, there

is limited detailed analysis of the impact of frequency on

performance.

In this paper, we investigate the influence of high-

frequency information on the performance of CNN and

transformer structures in SISR. We achieve this by discard-

ing different ratios of high-frequency components from the

input image and observing the corresponding performance

changes. Our empirical findings reveal that transformers

tend to prioritize low-frequency information and exhibit

limited capability in constructing high-frequency represen-

tations when compared to CNNs. To address this issue, we

proposed a cross-refinement adaptive feature modulation

transformer (CRAFT) that integrates the strengths of both

structures. Specifically, CRAFT comprises three key com-

ponents, namely the high-frequency enhancement residual

block (HFERB), the shift rectangle window attention block

(SRWAB), and the hybrid fusion block (HFB), which work

collaboratively to capture high-frequency details, extract

long-range dependencies, and refine the output for better

representation. Experimental results show that CRAFT out-

performs state-of-the-art performance with relatively fewer

parameters. The main contributions of this paper are as fol-



lows:

• We study the impact of CNN and transformer struc-

tures on performance from a frequency perspective and

observe that transformer is more effective in capturing

low-frequency information while having limited ca-

pacity for constructing high-frequency representations

compared to CNN.

• Based on the observation, we design a parallel struc-

ture to explore different frequency features. We utilize

the HFERB branch to introduce high-frequency infor-

mation, which is beneficial to SISR, and the SRWAB

branch to acquire global information.

• We propose a fuse strategy that integrates the strengths

of CNN and transformer. Specifically, we treat the

HFERB branch as high-frequency prior and the output

of SRWAB as key and value for inter-attention, result-

ing in improved performance.

• Extensive experimental results on multiple datasets

show that the proposed method performs on par with

the existing state-of-the-art SISR methods while using

fewer parameters.

2. Related Works
2.1. CNN-based SISR

Since the pioneering work SRCNN [7] has achieved sig-

nificant progress in SISR, various CNN-based works have

been proposed. Kim et al. [15] presented an SR method

using deep networks by cascading 20 layers, demonstrating

promising results. Building upon this, Lim et al. [23] in-

troduced the enhanced deep super-resolution (EDSR) net-

work, which achieved a significant performance boost by

removing the batch normalization layer [14] from the resid-

ual block and incorporating additional convolution layers.

Ahn et al. [2] designed an architecture with an increased

number of residual blocks and dense connections, further

improving the SR performance. In pursuit of lightweight

models, Hui et al. [13] proposed a selective fusion ap-

proach, employing cascaded information multi-distillation

blocks to construct an efficient model. Li et al. [19] intro-

duced a method involving predefined filters and utilized a

CNN to learn coefficients, which were then linearly com-

bined to obtain the final results. Sun et al. [34] proposed

a hybrid pixel-unshuffled network (HPUN) by introducing

an efficient and effective downsampling module into the SR

task.

2.2. Transformer-based SISR

Liang et al. [21] proposed SwinIR, a robust baseline

model for image restoration, leveraging the Swin Trans-

former [24]. CAT [6] modified the window shape and in-

troduced a rectangle window attention to obtaining better

performance. Chen et al. [4] proposed a pre-trained image

processing transformer and showed that pre-trained mecha-

nism could significantly improve the performance for low-

level tasks. Li et al. [18] comprehensively analyzed the

effect of pre-training and proposed a versatile model to

tackle different low-level tasks. Lu et al. [25] proposed a

lightweight transformer to capture long-range dependencies

between similar patches in an image with the help of the

specially designed efficient transformer and efficient atten-

tion mechanism. Zhang et al. [44] introduced a shift con-

volution and a group-wise multi-scale self-attention to re-

duce the complexity of transformer. HAT [5] introduced a

hybrid attention mechanism to enhance the performance of

window-based transformers.

3. Analysis of Frequency Impact
This section delves into the influence of performance

from a frequency perspective. To analyze the impact of var-

ious frequencies on CNN and transformer, we conduct two

sets of experiments using four common used benchmarks,

as illustrated in Figure 1.

We select CARN [2], IMDN [13], EDSR [23], and

SwinIR [21], CAT [6], HAT [5] as representatives of CNN

and transformer structures. The process of dropping fre-

quency components is depicted in Figure 1(c). Given

a high-resolution (HR) image XHR, we perform a fast

Fourier transform (FFT) on it to obtain its frequency spec-

trum. Subsequently, we flatten this spectrum into a se-

quence and arrange it in ascending order based on the mag-

nitudes. With a sequence length of L, we define a threshold

determined by the drop ratio γ, 0 ≤ γ ≤ 1, located at the

magnitude corresponding to the position γ · L. Frequency

components with magnitudes below this threshold are set

to zero. Following this, we perform an inverse fast Fourier

transform (IFFT) to generate the HR image with dropped

frequencies, referred to as XHR
drop(γ). The formulation for

this process is as follows

XHR
drop(γ) = IFFT (Drop(|FFT (XHR)|, γ)). (1)

Afterward, we downsample XHR
drop(γ) using bicubic in-

terpolation to obtain the LR version XLR
drop(γ) (e.g.

×4 down-sampling). Finally, we employ CNN-based

and transformer-based SR models to generate the super-

resolved counterpart XSR
drop(γ).

To analyze the dependency of CNN and transformer

on high-frequency information, we compute the peak

signal-to-noise ratio (PSNR) PD(γ) between XSR
drop(γ) and

XHR
drop. We then plot the PSNR drop trend to visualize the

difference between the two structures. As shown in Fig-

ure 1(a), the PSNR drop ratio for each drop ratio is defined
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(a) Dependency of different structures on high-frequency information.
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(b) Effectiveness of reconstructing high-frequency information.
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(c) The procedure of dropping high-frequency.

Figure 1. The influence of high-frequency information on the performance of CNN and transformer architectures. Dashed and solid lines

correspond to CNN and transformer methods, respectively. (a) With an increase in the high-frequency drop ratio, transformer models

exhibit a smaller change in PSNR compared to CNN, suggesting their superiority in capturing low-frequency information. (b) As the

high-frequency drop ratio increases, transformer models show a more pronounced change in PSNR compared to CNN, indicating their

limited ability to reconstruct high-frequency information from low-frequency.

as

RD
drop(γ) =

P (0)− PD(γ)

P (0)
, (2)

where P (0) represents the PSNR without dropping, cal-

culated between XSR and XHR. The figures illustrate

that the transformer model exhibits reduced sensitivity to

high-frequency information and excels in capturing low-

frequency information, as evidenced by the smaller PSNR

change compared to the CNN model as the proportion of

discarded high-frequency information increases.

Furthermore, we conduct another experiment to evalu-

ate the effectiveness of different structures in reconstruct-

ing high-frequency information. Specifically, we calculate

the PSNR PE(γ) between XSR
drop(γ) and XHR and plot the

performance drop trend as previously depicted. The PSNR

drop ratio for each drop ratio can be expressed as

RE
drop(γ) =

PE(γ)− P (0)

P (0)
. (3)

From Figure 1(b), we observe that as the proportion of

discarded high-frequency information increases, the trans-

former model experiences a larger PSNR change compared

to the CNN model, indicating its limited ability to recon-

struct high-frequency information from low-frequency.

Based on these observations, we argue that the trans-

former requires the assistance of CNN to enhance its ca-

pability to recover intricate details. To address this, we pro-

pose a method that combines the strengths of both CNN and

transformer. Specifically, we introduce CNN information as

a high-frequency prior to aid the transformer in refining the

global representation.

4. Proposed Method

The CRAFT network comprises three key components:

Shallow feature extraction, residual cross-refinement fusion

groups (RCRFGs), and reconstruction as shown in Figure 2.

The shallow feature extraction module comprises a single

convolutional layer, while the reconstruction module is fol-

lowed by the SwinIR [21]. The RCRFG component consists

of several cross-refinement fusion blocks (CRFBs), each

comprising three types of blocks: the high-frequency en-

hancement residual blocks (HFERBs), the shift rectangle

window attention blocks (SRWABs), and the hybrid fusion

blocks (HFBs). We first describe the overall structure of
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Figure 2. The framework of CRAFT. HFERB extracts the high frequency from the input features, SRWAB captures the long-range depen-

dency of input features, and HFB integrates the output of HFERB and SRWAB to cross refine the global features. Best viewed in color.

CRAFT and then elaborate on the three key designs, includ-

ing HFERB, SRWAB, and HFB.

4.1. Model Overview

The input LR image is processed by a 3×3 convolutional

layer to obtain shallow features. These features are then

fed into a serial of RCRFGs to learn deep features. After

the last RCRFG, a 3× 3 convolutional layer aggregates the

features, and a residual connection is established between

its output and the shallow features for facilitating training.

The reconstruction module employs a 3 × 3 convolutional

layer to aggregate the features, and a shuffle layer [33] is

used to obtain the final SR output image.

4.2. High-frequency Enhancement Residual Block

The HFERB aims to enhance the high-frequency infor-

mation, as shown in Figure 2. It comprises the local feature

extraction (LFE) branch and the high-frequency enhance-

ment (HFE) branch. Specifically, we split the input features

Fin∈R
H×W×C into two parts, and then processed by the

two branches separately

FLFE
in , FHFE

in = Split(Fin), (4)

where FLFE
in , FHFE

in ∈R
H×W×C/2 represent the input of

LFE and HFE. For the LFE branch, we utilize a 3× 3 con-

volutional layer followed by a GELU activation function to

extract local high-frequency features

F̂LFE
in = fa(Conv3×3(F

LFE
in )), (5)

where the Conv3×3(·) refers to the convolutional layer and

the fa(·) represents the GELU activation layer. For the

HFE branch, we employ a max-pooling layer to extract

high-frequency information from the input features FHFE
in .

Then, we use a 1 × 1 convolutional layer followed by a

GELU activation function to enhance the high-frequency

features,

F̂HFE
in = fa(Conv1×1(MaxPooling(FHFE

in ))), (6)



where the Conv1×1(·) indicates the convolutional layer, the

MaxPooling(·) means the max-pooling layer and the fa(·)
represents the GELU activation layer. The outputs of the

two branches are then concatenated and fed into a 1 × 1
convolutional layer to fuse the information thoroughly. To

make the network benefit from multi-scale information and

maintain training stability, a skip connection is introduced.

The whole process can be formulated as

XH = Conv1×1(Concat(F̂LFE
in , F̂HFE

in )) + Fin, (7)

where the Concat(·) refers to the concatenation operation

and the Conv1×1(·) represents the convolutional layer.

4.3. Shift Rectangle Window Attention Block

We utilize the shift rectangle window (SRWin) to ex-

pand the receptive field, which can benefit SISR [6]. Un-

like square windows, the SRWin uses rectangle windows to

capture more relevant information along the longer axis. In

detail, given an input Xin ∈R
H×W×C , we divide it into

H×W
rh×rw rectangle windows, where rh and rw refer to the

height and width of the rectangle window. For the i-th rect-

angle window feature Xi ∈R
(rh×rw)×C , we compute the

query, key, and value as follows

Qi = XiW
Q
i ,Ki = XiW

K
i ,V i = XiW

V
i , (8)

where the WQ
i ∈RC×d, WK

i ∈RC×d and WV
i ∈RC×d repre-

sent the projection matrices and d is projection dimension

which is commonly set to d = C
M where the M is the num-

ber of heads. The self-attention can be formulated as

Attention(Qi,Ki,V i)=Softmax(
QiK

T
i√

d
+B)V i, (9)

where B is the dynamic relative position encoding [38].

Moreover, a convolutional operation on the value is intro-

duced to enhance local extraction capability. To capture in-

formation from different axes, we utilize two types of rect-

angle windows: Horizontal and vertical windows. Unlike

traditional operations that utilize attention masks to limit

calculations to the same window, in practice, we eliminate

the mask and enable more extensive information interac-

tion across different windows. Accordingly, we split the

attention heads into two equal groups and compute the self-

attention within each group separately. We then concatenate

the outputs of the two groups to obtain the final output. The

procedure can be expressed as

Rwin-SA(X) = Concat(V -Rwin,H-Rwin)W p, (10)

where the W p ∈R
C×C represents the linear projection to

fuse the features, V -Rwin and H-Rwin indicate the verti-

cal and horizontal rectangle window attention. In addition,

a multi-layer perceptron (MLP) is used for further feature

transformations. The whole process can be formulated as

X = Rwin-SA(LN(Xin)) +Xin

XS = MLP (LN(X)) +X,
(11)

where the LN represents the LayerNorm layer.

4.4. Hybrid Fusion Block

To better integrate the merits of CNN and transformer

(HFERB and SRWAB), we have designed a hybrid fusion

block (HFB), which is illustrated in Figure 2. We for-

mulate the output of HFERB as the high frequency prior

query and the output of SRWAB as key, value and calcu-

late the inter-attention to refine the global features which

are obtained from SRWAB. Moreover, most existing meth-

ods focus on spatial relations and overlook channel infor-

mation. To overcome this limitation, we perform inter-

attention based on the channel dimension to explore channel

dependencies. This design will significantly reduce com-

plexity. Traditional methods that utilize spatial attention

tend to result in significant computational complexity (e.g.,

O(N2C), N � C), where N represents the length of the

sequence and C represents the channel dimension. In con-

trast, our channel attention design can transfer the quadratic

component to the channel dimension (e.g., O(NC2)), ef-

fectively reducing complexity.

Specifically, as shown in Figure 2, we use a 1× 1 convo-

lutional layer followed by a 3× 3 depth-wise convolutional

layer to generate the high frequency query Q∈R
H×W×C

based on the output of HFERB, XH . As to the output of

SRWAB, XS , we first normalize the features by LayerNorm

layer and then use the same operation as the query Q to get

the key K∈R
H×W×C and the value V ∈R

H×W×C . Fol-

lowing the [42], we perform the reshape operation on Q,

K and V to get the Q̂∈R
C×(HW ), K̂ ∈R

C×(HW ) and

V̂ ∈R
C×(HW ). After that, we compute the inter-attention

as

Attention(Q̂, K̂, V̂ ) = Softmax(
Q̂K̂T

α
)V̂ , (12)

where the α represents the learnable parameter. Meanwhile,

we add the refinement features to the XS to get the fu-

sion output Xfuse. In addition, we feed Xfuse to an im-

proved feed-forward network [42] to aggregate the features

further. The details of this structure are shown in Figure 2.

It introduced a gate mechanism to fully extract the spatial

and channel information and gain better performance. The

whole process can be formulated as

Xfuse=Inter-Atten(LN(XS), XH)+XS

XHFB=IMLP (LN(X))+Xfuse,
(13)

where the LN means LayerNorm operation, IMLP rep-

resents the improved MLP, and Inter-Atten indicates



Table 1. Performance comparison of different SISR models on five benchmarks. Params represents the total number of network parameters.

Results for the best and second best candidates are highlighted, and underlined.

Scale Model Params
Set5

(PSNR/SSIM)

Set14

(PSNR/SSIM)

BSD100

(PSNR/SSIM)

Urban100

(PSNR/SSIM)

Manga109

(PSNR/SSIM)

×2

EDSR-baseline [23] 1370K 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769

CARN [2] 1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

IMDN [13] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

LatticeNet [26] 756K 38.06/0.9607 33.70/0.9187 32.20/0.8999 32.25/0.9288 -/-

LAPAR-A [19] 548k 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772

HPUN-L [34] 714K 38.09/0.9608 33.79/0.9198 32.25/0.9006 32.37/0.9307 39.07/0.9779

SwinIR-light [21] 878K 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783

ESRT [25] 777K 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774

ELAN-light [44] 582K 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782

CRAFT (Ours) 737K 38.23/0.9615 33.92/0.9211 32.33/0.9016 32.86/0.9343 39.39/0.9786

×3

EDSR-baseline [23] 1555K 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439

CARN [2] 1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440

IMDN [13] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

LatticeNet [26] 765K 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -/-

LAPAR-A [19] 544k 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441

HPUN-L [34] 723K 34.56/0.9281 30.45/0.8445 29.18/0.8072 28.37/0.8572 33.90/0.9463

SwinIR-light [21] 886K 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478

LBNet [9] 736K 34.47/0.277 30.38/0.8417 29.13/0.8061 28.42/0.8559 33.82/0.9406

ESRT [25] 770K 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455

ELAN-light [44] 590K 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478

CRAFT (Ours) 744K 34.71/0.9295 30.61/0.8469 29.24/0.8093 28.77/0.8635 34.29/0.9491

×4

EDSR-baseline [23] 1518K 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

CARN [2] 1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

IMDN [13] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

LatticeNet [26] 777K 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 -/-

LAPAR-A [19] 659k 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074

HPUN-L [34] 734K 32.31/0.8962 28.73/0.7842 27.66/0.7386 26.27/0.7918 30.77/0.9109

SwinIR-light [21] 897K 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151

LBNet [9] 742K 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906 30.76/0.9111

ESRT [25] 751K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100

ELAN-light [44] 601K 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150

CRAFT (Ours) 753K 32.52/0.8989 28.85/0.7872 27.72/0.7418 26.56/0.7995 31.18/0.9168

the proposed inter-attention mechanism, which introduces

high-frequency prior to refining the global representations.

5. Experiments
5.1. Data and Metrics

In this paper, we adopt the DIV2K [1] as the training

dataset, which includes 800 training images. Meanwhile,

five benchmarks are used for evaluation, including Set5 [3],

Set14 [43], BSD100 [27], Urban100 [12], and Manga109

[28] with three magnification factors: ×2, ×3, and ×4. The

quality of the images is evaluated using PSNR, and SSIM

[39]. The complexity of the model is indicated by its pa-

rameters.

5.2. Implementation Details

Following the general setting, we use bicubic to obtain

the corresponding LR images from the original HR images.

During training, we randomly crop the images into 64× 64
patches, and the total training iterations are 500K. Mean-

while, data augmentation is performed, such as random hor-

izontal flipping and 90◦ rotation. The Adam optimizer with

β1 = 0.9 and β2 = 0.999 is adopted to minimize the

L1 Loss. The batch size is set to 64, the initial learning

rate is set to 2 × 10−4 and reduced by half at the mile-

stone [250K, 400K, 450K, 475K]. In addition, the model is

trained on 4 NVIDIA 3090 GPUs using the PyTorch tool-

box. In CRAFT, we have set the RCRFG number to 4 and

the CRFB number to 2 for each RCRFG. Each CRFB is

comprised of 1 HFERB and 2 SRWABs for efficiency. The

feature channel, attention head, and MLP expansion ratio

are set to 48, 6, and 2, respectively. We also set the IMLP

expansion ratio to 2.66, as in [42]. To obtain two types of

rectangle windows, we have set the rectangle window size

to [sh, sw] as [4, 16] and [16, 4].

5.3. Comparison with state-of-the-art methods

We compare with several state-of-the-art SISR meth-

ods to demonstrate the effective of the proposed CRAFT

model, including EDSR [23], CARN [2], IMDN [13],

LatticeNet [26], LAPAR [19], SwinIR [21], HPUN [34],

ESRT [25], LBNet [9], and ELAN [44].

Quantitative Results. The experimental results for

SISR are presented in Table 1, where the proposed CRAFT

model demonstrates competitive performance across all

benchmarks. Particularly, when compared to traditional

CNN-based methods like EDSR, the proposed CRAFT

achieves significant performance improvements of 0.85dB,
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Figure 3. Visual quality comparison with SOTA methods. CRAFT achieves better restoration quality in both line direction and details.

0.84dB, and 0.83dB at magnification factors ×2,×3, and

×4, respectively, while using 46%, 52%, and 50% fewer

parameters on the Manga109 dataset. Furthermore, com-

pared to recent channel attention methods such as CARN,

the proposed CRAFT achieves improvements of 1.03dB,

0.79dB, and 0.71dB at magnification factors ×2,×3, and

×4, respectively, with a 54%, 53%, and 52% reduction in

the number of parameters on the Manga109 dataset. Re-

garding transformer-based methods [25, 21, 44], the pro-

posed CRAFT gains performance improvements of 0.34dB,

0.31dB, and 0.29dB, respectively, with a comparable num-

ber of parameters under the magnification factor of ×3 on

the Manga109 dataset.

Qualitative Results. We present a visual comparison

(×4) in Figure 3 and analyze the results. Our proposed

CRAFT model integrates the strengths of both CNN and

transformer structures, leading to accurate line direction re-

covery while preserving image details. To further investi-

gate the performance, we compare the local attribution map

(LAM) [11] between CRAFT and SwinIR, as shown in Fig-

ure 4. LAM indicates the correlation between the signifi-

cance of each pixel in LR and the SR of the patch that is

outlined with the red box. By leveraging a broader range

of information, our model achieves improved results. Fur-

thermore, we examine the diffusion index (DI), which sig-

nifies the range of pixels involved. A larger DI indicates a

wider scope of attention. Compared to SwinIR, our model

exhibits a higher DI, implying that it can capture more con-

textual information. These results demonstrate the effec-

tiveness of the proposed CRAFT method.

5.4. Ablation study

5.4.1 Effectiveness of HFERB and SRWAB

We conduct several experiments to show the effectiveness

of HFERB and SRWAB in Table 2. Specifically, we re-

moved SRWAB and HFERB separately to assess their con-

tributions. We observed that using local or global infor-

mation alone, as in CRAFTconv and CRAFTtransformer,

respectively, is insufficient to learn a better representation

(lower performance). Furthermore, we found that SR-

WAB provides the most significant performance improve-

ment, demonstrating the benefits of the long-range depen-

dencies learned by the transformer. In addition, high-

frequency priors from CNN are also helpful in restoring

details, cross-refining learned features and further improv-

ing performance. Meanwhile, we also analyzed the prop-

erties of HFERB and SRWAB from a frequency perspec-

tive. We visualized the features extracted from two blocks

in different RCRFGs and plotted the Fourier spectrum to

observe what each block learns. The results, shown in Fig-

ure 5, indicate that HFERB focuses more on high-frequency

information, while SRWAB extracts more global informa-
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Figure 4. Comparison of the LAM results of SwinIR [21] and CRAFT. LAM indicates the correlation between the significance of each

pixel in LR and the SR of the patch that is outlined with the red box. CRAFT utilizes a broader range of information to obtain better

performance. DI quantifies the LAM results, CRAFT has a higher DI score, indicating its ability to capture more contextual information.

Table 2. Study of HFERB, SRWAB, and HFB on SISR. The results

(×4) are obtained from the Manga109 dataset.

Model HFERB SRWAB HFB Concat PSNR

CRAFTconv � � 30.79

CRAFTtranformer � � 31.12

CRAFTconcat � � � 30.92

CRAFT � � � 31.18

tion. Specifically, the top row of each image indicates the

Fourier spectrum of each block, and the bottom row indi-

cates the feature maps of each block. The figure shows that

SRWAB has a weaker response and focuses more on the

low-frequency parts, which correspond to flat regions, while

HFERB shows a stronger response and focuses more on in-

tricate parts of features, such as edges and corners. The

feature maps on the bottom row also support this conclu-

sion. HFERB captures more details such as window edges

and cornices, while SRWAB pays more attention to flat ar-

eas such as windows and walls.

5.4.2 Effectiveness of HFB

To evaluate the effectiveness of HFB, we conducted an ex-

periment where we modified the fusion method to a con-

catenation formulation. This involved concatenating the

Table 3. Effectiveness of high-frequency prior. The results (×4)

are obtained from the Manga109 dataset.

Model Regular Swap Cascade PSNR SSIM

CRAFTswap � 30.67 0.9113

CRAFTcascade � 30.88 0.9141

CRAFT � 31.18 0.9168

Table 4. Complexity analysis compared to SwinIR.

Model
#Params.

(K)

#FLOPs

(G)

#GPU Mem.

(M)

Ave. Time

(ms)

SwinIR 897 32.2 141.2 72.0

CRAFT 753 26.1 79.5 42.8

HFERB and SRWAB output and replacing the HFB with a

3× 3 convolutional layer to obtain the final output. The re-

sults are presented in Table 2, where CRAFTconcat denotes

the modified version. The result shows that our proposed

method outperforms the concatenation structure by 0.26dB,

demonstrating the effectiveness of our HFB. The observed

result can be attributed to SRWAB and HFERB focusing on

disparate frequency information. Stacking features directly

impedes the ability of the network to learn the relation-

ship between high-frequency and low-frequency compo-

nents. Conversely, the inter-attention mechanism presents

a viable solution for integrating features with different dis-

tributions.
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Figure 5. Visualization of HFERB and SRWAB. The LFE indicates the local feature extraction branch in HFERB, the HFE means the

high-frequency enhancement branch in HFERB, and the SRWin-Attention represents the self-attention part in SRWAB.

5.4.3 Effectiveness of High-Frequency Prior

We conducted several experiments to investigate the effec-

tiveness of high-frequency prior. Firstly, we swapped the

input of Q and K, V in HFB and treated the output of

SRWAB as Q and the output of HFERB as K, V to ver-

ify whether global features are dominant in restoration and

high-frequency features only serve as a prior for refining

the global representation. As shown in Table 3, compared

to the original design, swapping the input leads to a signifi-

cant drop in performance, with a 0.51dB decrease in PSNR.

Furthermore, we also performed an experiment to formulate

the model as a cascade structure to verify the effectiveness

of the design introducing high-frequency priors. As shown

in Table 3, the CRAFTcascade structure resulted in a per-

formance drop, with a 0.3dB decrease in PSNR compared

to CRAFT. These results demonstrate the effectiveness of

high-frequency priors in the CRAFT model.

5.4.4 Complexity analysis

We compared CRAFT with SwinIR in terms of complex-

ity using an input size of 128 × 128, as shown in Table 4.

The analysis considered parameters, FLOPs, GPU memory

consumption, and average inference time. GPU memory

was measured using the official PyTorch function, and time

cost was calculated based on 100 inference runs. Com-

pared to SwinIR, CRAFT has fewer parameters and FLOPs,

and requires less memory consumption and inference time.

Additionally, we analyzed the complexity of our CRAFT

framework and summarized the findings in Table 5. We ob-

served that SRWAB contributes approximately 46% of the

total complexity, while HFERB involves fewer convolution

operations, resulting in reduced FLOPs. Furthermore, the

HFB module’s channel-wise attention effectively reduces

Table 5. Complexity analysis of each block.

Model
CRAFT

w/o HFERB

CRAFT

w/o SRWAB

CRAFT

w/o HFB
CRAFT

#Params. (K) 688 441 503 753

#FLOPs (G) 23.8 14.2 20.0 26.1

the computational burden.

6. Conclusion
This paper investigates the impact of frequency on the

performance of CNN and transformer structures in SISR

and finds that transformer structures are more adept at cap-

turing low-frequency information, but have limited capabil-

ity to reconstruct high-frequency representations compared

to CNN. To address this issue, we design a feature modu-

lation transformer, named cross-refinement adaptive feature

modulation transformer (CRAFT), which comprises three

key components: the high-frequency enhancement residual

block (HFERB), the shift rectangle window attention block

(SRWAB), and the hybrid fusion block (HFB). The HFERB

is designed to extract high-frequency features, while the

SRWAB captures global representations. In the HFB, we

treat the output of HFERB as a high-frequency prior and

the output of SRWAB as key and value, and use inter-

attention to refine the global representation. Experimental

results demonstrate that CRAFT outperforms state-of-the-

art methods by up to 0.29dB with relatively fewer parame-

ters.
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