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Abstract. The essence of video semantic segmentation (VSS) is how
to leverage temporal information for prediction. Previous efforts are
mainly devoted to developing new techniques to calculate the cross-
frame affinities such as optical flow and attention. Instead, this paper
contributes from a different angle by mining relations among cross-frame
affinities, upon which better temporal information aggregation could be
achieved. We explore relations among affinities in two aspects: single-
scale intrinsic correlations and multi-scale relations. Inspired by tradi-
tional feature processing, we propose Single-scale Affinity Refinement
(SAR) and Multi-scale Affinity Aggregation (MAA). To make it fea-
sible to execute MAA, we propose a Selective Token Masking (STM)
strategy to select a subset of consistent reference tokens for different
scales when calculating affinities, which also improves the efficiency of
our method. At last, the cross-frame affinities strengthened by SAR and
MAA are adopted for adaptively aggregating temporal information. Our
experiments demonstrate that the proposed method performs favorably
against state-of-the-art VSS methods. The code is publicly available at
https://github.com/GuoleiSun/VSS-MRCFA.

Keywords: Video semantic segmentation; Cross-frame affinities; Single-
scale affinity refinement; Multi-scale affinity aggregation

1 Introduction

Image semantic segmentation aims at classifying each pixel of the input image
to one of the predefined class labels, which is one of the most fundamental tasks
in visual intelligence. Deep neural networks have made tremendous progresses in
this field [41,52,5,21,55,17,18,58,30,50,24,25,11,10], benefiting from the availabil-
ity of large-scale image datasets [9,54,3,35] for semantic segmentation. However,
in real life, we usually confront more complex scenarios in which a series of suc-
cessive video frames need to be segmented. Thus, it is desirable to explore video
semantic segmentation (VSS) by exploiting the temporal information.
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Fig. 1. Left : recent VSS methods [37,29] for which the affinity is directly forwarded to
the next step (feature retrieval). The affinity is shown in a series of 2D maps. Right :
We propose to mine the relations within the affinities before outputting the affinity, by
Single-scale Affinity Refinement (SAR) and Multi-scale Affinity Aggregation (MAA).

The core of VSS is how to leverage temporal information. Most of the existing
VSS works rely on the optical flow to model the temporal information. Specifi-
cally, they first compute the optical flow [14] that is further used to warp the fea-
tures from neighboring video frames for feature alignment [56,16,48,36,22,33,28].
Then, the warped features can be simply aggregated. Although workable in cer-
tain scenarios, those methods are still unsatisfactory because i) the optical flow
is error-prone and thus the error could be accumulated; ii) directly warping fea-
tures may yield inevitable loss on the spatial correlations [31,20]. Hence, other
approaches [37,29] directly aggregate the temporal information in the feature
level using attention techniques, as shown in Fig. 1. Since they are conceptually
simple and avoid the problems incurred by optical flow, we follow this way to
exploit temporal information. In general, those methods first calculate the at-
tentions/affinities between the target and the references, which are then used to
generate the refined features. Though promising, they only consider the single-
scale attention. What’s more, they do not mine the relations within the affinities.

In this paper, we propose a novel approach MRCFA by Mining Relations
among Cross-Frame Affinities for VSS. Specifically, we compute the Cross-
Frame Affinities (CFA) between the features of the target frame and the
reference frame. Hence, CFA is expected to have large activation for informa-
tive features and small activation for useless features. When aggregating the
CFA-based temporal features, the informative features are highlighted and use-
less features are suppressed. As a result, the segmentation of the target frame
would be improved by embedding temporal contexts. With the above analysis,
the main focus of this paper is mining relations among CFA to improve the
representation capability of CFA. Since deep neural networks usually generate
multi-scale features and CFA can be calculated at different scales, we can obtain
multi-scale CFA accordingly. Intuitively, the relations among CFA are twofold:
single-scale intrinsic correlations and multi-scale relations.

For the single-scale intrinsic correlations, each feature token in a reference
frame (i.e., reference token) corresponds to a CFA map for the target frame.
Intuitively, we have the observation that the CFA map of each reference token
should be locally correlated as the feature map of the target frame is locally
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correlated, which is also the basis of CNNs. It is interesting to note that the
traditional 2D convolution can be adopted to model such single-scale intrinsic
correlations of CFA. Generally, convolution is used for processing features. In
contrast, we use convolution to refine the affinities of features for improving the
quality of affinities. We call this step Single-scale Affinity Refinement (SAR).

For themulti-scale relations, we propose to exploit the relations among multi-
scale CFA maps. The CFA maps generated from high-level features have a small
scale and a coarse representation, while the CFA maps generated from low-level
features have a large scale and a fine representation. It is natural to aggregate
multi-scale CFA maps using a high-to-low decoder structure so that the result-
ing CFA would contain both coarse and fine affinities. Generally, the decoder
structure is usually used for fusing multi-scale features. In contrast, we build
a decoder to aggregate the multi-scale affinities of features. We call this step
Multi-scale Affinity Aggregation (MAA).

When we revisit the above MAA, one requirement arises: the reference tokens
at different scales should have the same number and corresponding semantics;
otherwise, it is impossible to connect a decoder. As discussed above, each ref-
erence token corresponds to a CFA map for the target frame. Only when two
reference tokens have the same semantics, their CFA maps can be merged. For
this goal, a simple solution is to downsample reference tokens at different scales
into the same size. This also saves the computation due to the reduction of
reference tokens. It inspires us to further reduce the computation by sampling
reference tokens. To this end, we propose a Selective Token Masking strategy
to select S most important reference tokens and abandon less important ones.
Then, the relation mining among CFA is executed based on the selected tokens.

In summary, there are three aspects for mining relations among CFA: i)
We propose Single-scale Affinity Refinement for refining the affinities among
features, based on single-scale intrinsic correlations; 2) We further introduce
Multi-scale Affinity Aggregation by using an affinity decoder for aggregating the
multi-scale affinities among features; 3) To make it feasible to execute MAA
and improve efficiency, we propose Selective Token Masking (STM) to generate
a subset of consistent reference tokens for each scale. After strengthened with
single-scale and multi-scale relations, the final CFA can be directly used for em-
bedding reference features into the target frame. Extensive experiments show the
superiority of our method over previous VSS methods. Besides, our exploration
of affinities among features would provide a new perspective on VSS.

2 Related Works

2.1 Image Semantic Segmentation

Image semantic segmentation has always been a hot topic in image understand-
ing since it plays an important role in many real applications such as autonomous
driving, robotic perception, augmented reality, aerial image analysis, and medical
image analysis. In the era of deep learning, various algorithms have been pro-
posed to improve semantic segmentation. Those related works can be divided into
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two groups: CNN-based methods [41,51,8,19,5,49,40,44,1,12] and transformer-
based methods [53,47]. Among CNN-based methods, FCN [41] is a pioneer work,
which adopts fully convolutional networks and pixel-to-pixel classification. Since
then, other methods [4,5,52,21,58,15] have been proposed to increase the recep-
tive fields or representation ability of the network. Another group of works [53,47]
is based on the transformer which is first proposed in natural language process-
ing [45] and has the ability to capture global context [13]. Though tremendous
progress has been achieved in image segmentation, researchers have paid more
and more attention to VSS since video streams are a more realistic data modality.

2.2 Video Semantic Segmentation

Video semantic segmentation (VSS), aiming at classifying each pixel in each
frame of a video into a predefined category, can be tackled by applying sin-
gle image semantic segmentation algorithms [5,52,47,6,7] on each video frame.
Though simple, this approach serves as an important baseline in VSS. One
obvious drawback of this method is that the temporal information between
consecutive frames is discarded and unexploited. Hence, dedicated VSS ap-
proaches [27,42,32,23,16,36,46,48,22,31,57,33,20,34,37,38,28] are proposed to make
use of the temporal dimension to segment videos.

Most of the current VSS approaches can be divided into two groups. The first
group of approaches focuses on using temporal information to reduce computa-
tion. Specifically, LLVS [31], Accel [22], GSVNET [28] and EVS [38] conserve
computation by propagating the features from the key frames to non-key frames.
Similarly, DVSNet [17] divides the current frame into different regions and the
regions which do not differ much from previous frames do not traverse the slow
segmentation network, but a fast flow network. However, due to the fact that
they save computation on some frames or regions, their performance is usually
inferior to the single frame baseline. The second group of methods focuses on
exploring temporal information to improve segmentation performance and pre-
diction consistency across frames. Specifically, NetWarp [46] wraps the features
of the reference frames for temporal aggregation. TDNet [20] aggregates the fea-
tures of sequential frames with an attention propagation module. ETC [33] uses
motion information to impose temporal consistency among predictions between
sequential frames. STT [29], LMANet [37] and CFFM [43] exploit the features
from reference frames to help segment the target frame by the attention mecha-
nism. Despite the promising results, those methods do not consider correlation
mining among cross-frame affinities. This paper provides a new perspective on
VSS by mining the relations among affinities.

3 Methodology

In this section, we target VSS and present a novel approach MRCFA through
Mining Relations among Cross-Frame Affinities. The main idea of MRCFA is
to mine the relations among multi-scale affinities computed from multi-scale
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Fig. 2. Network overview of MRCFA. Our method is illustrated when the clip contains
three frames (T = 3). The first two frames are reference frames while the last one
is the target frame. All frames first go through the encoder to extract the multi-scale
features (L = 3) from the intermediate layers. For each reference frame, we compute the
Cross-Frame Affinities (CFA) across different scales of features. To save computation,
Selective Token Masking is proposed. Then, the multi-scale affinities are input to an
affinity decoder to learn a unified and informative affinity, through the Single-scale
Affinity Refinement (SAR) module and Multi-scale Affinity Aggregation (MAA). The
new representation of the target frame using the reference is obtained by exploiting
the refined affinity to retrieve the corresponding reference features. Finally, all the new
representations of the target are merged to segment the target. Best viewed in color.

intermediate features between the target frame and the reference frames, as
illustrated in Fig. 2. We first provide the preliminaries in §3.1. Next, we introduce
Single-scale Affinity Refinement (SAR) which independently refines each single-
scale affinity in §3.2. After that, Multi-scare Affinities Aggregation (MAA) which
merges affinities across various scales is presented in §3.3. Finally, we explain the
Selective Token Masking mechanism (§3.4) to reduce the computation.

3.1 Preliminaries

Given a video clip {Iti ∈ RH×W×3}Ti=1 containing T video frames and cor-
responding ground-truth masks {Mti ∈ RH×W }Ti=1, our objective is to learn
a VSS model. Without loss of generalizability, we focus on segmenting the last
frame ItT , which is referred as the target frame. All the previous frames {Iti}T−1

i=1

are referred as the reference frames. Each frame Iti is first input into an encoder
to extract intermediate features {F l

ti ∈ RHlWl×Cl}Ll=1 in various scales from L
intermediate layers of the deep encoder, where Hl, Wl, Cl correspond to the
height, width, number of channels of the feature map, respectively. For sim-
plicity, multi-scale features {F l

ti}
L
l=1 are in the order that shallow features are

followed by deep features. We have Hl1 ≥ Hl2 and Wl1 ≥ Wl2 , if l1 < l2. In this
paper, we aim to exploit the contextual information in the reference frames to re-
fine the features of the target frame and thus improve the target’s segmentation.
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Instead of simply modeling the affinities among frames for feature aggregation,
we devote our efforts to mine relations among cross-frame affinities.

3.2 Single-scale Affinity Refinement

We start with introducing the process of generating multi-scale affinities between
the target frame and each reference frame. We first map the features {F l

tT }
L
l=1

of the target frames into the queries {Ql}Ll=1 by a linear layer, as:

Ql = f(F l
tT ;W

l
query), (1)

where W l
query ∈ RCl×Cl is the weight matrix of the linear layer f and Ql ∈

RHlWl×Cl . Similarly, the multi-scale features {F l
ti}

L
l=1 of the reference frame

(i ∈ [1, T − 1]) are also processed to generate the keys {Kl
ti}

L
l=1, as follows:

Kl
ti = f(F l

ti ;W
l
key), (2)

where W l
key ∈ RCl×Cl is the corresponding weight matrix and Kl

ti ∈ RHlWl×Cl .
After obtaining the queries and the keys, we are ready to generate the affinities
between the target frame ItT and each reference frame Iti (i ∈ [1, T − 1]) across
all scales. Then, Cross-Frame Affinities (CFA) are computed as:

Al
ti = Ql ×Kl⊤

ti , (3)

where we have Al
ti ∈ RHlWl×HlWl , l ∈ [1, L] and i ∈ [1, T − 1]. It means that, at

each scale, the target frame has an affinity map with each reference frame.
Based on the affinities {Al

ti}
L
l=1, our affinity decoder is designed to mine the

correlations between them to learn a better affinity between the target and the
reference frame. As shown in Fig. 2, it is comprised of two modules: Single-scale
Affinity Refinement (SAR) and Multi-scale Affinity Aggregation (MAA). Please
refer to §1 for our motivations. In order to reduce computation and prepare the
affinities for MAA module which requires the same number and corresponding
semantics (see §1), our affinity decoder operates on {Ãl

ti ∈ RHlWl×S}Ll=1, rather

than {Al
ti ∈ RHlWl×HlWl}Ll=1. The affinities Ãl

ti is a downsampled version of
Al

ti along the second dimension, which will be explained in §3.4.
Single-scale Affinity Refinement (SAR). For the affinity matrix Ãl

ti , each
of its elements corresponds to a similarity between a token in the query and a
token in the key. We reshape Ãl

ti from RHlWl×S to RHl×Wl×S . In order to learn

the correlation within the single-scale affinity Ãl
ti ∈ RHl×Wl×S , a straightfor-

ward way is to exploit 3D convolution. However, this approach suffers from two
weaknesses. First, it requires a large amount of computational cost. Second, not
all the activations within the 3D window are meaningful. Considering a 3D con-
volution with a kernel K ∈ Rk×k×k, the normal 3D convolution at the location
x = (x1, x2, x3) is formulated as:

(Ãl
ti ∗ K)x =

∑
(o1,o2,o3)∈N (x)

Ãl
ti(o1, o2, o3)K(o1 − x1, o2 − x2, o3 − x3), (4)
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where N (x) is the set of locations in the 3D window (k × k × k) centered at x,
and |N (x)| = k3. As seen in Eq. (4), all the neighbors along three dimensions are
used to conduct the 3D convolution. However, the last dimension of Ãl

ti is the
sparse selection in the key (§3.4) and thus does not contain spatial information.
Including the neighbors along the last dimension could introduce noise and bring
more complexity. Thus, we propose to refine the affinities across the first two
dimension. For affinity Ãl

ti of each scale, we first permute it to RS×Hl×Wl and
then use 2D convolutions to learn the relations within the affinity. The refined
affinity is denoted as Āl

ti ∈ RS×Hl×Wl . This process can be formulated as:

Ãl
ti ∈ RHl×Wl×S → Ãl

ti ∈ RS×Hl×Wl ,

Āl
ti = G(Ãl

ti),
(5)

where G represents a few connvolutional layers. Due to the use of 2D convolution
and the token reduction mentioned in §3.4, the refinement of affinities is fast.
After refining affinity for each scale, we collect the refined affinities {Āl

ti}
L
l=1 for

all scales. Next, we present Multi-scale Affinity Aggregation (MAA) module.

3.3 Multi-scale Affinity Aggregation

Multi-scale Affinity Aggregation (MAA). The affinity from the deep
features contains more semantic but more coarse information, while the affinity
from the shallow features contains more fine-grained but less semantic infor-
mation. Thus, we propose a Multi-scale Affinity Aggregation module to
aggregate the information from small-scale affinities to large-scale affinities, as:

BL
ti = ĀL

ti ,

Bl
ti = G(Γ (Bl+1

ti ) + Āl
ti), l = L− 1, ..., 1,

(6)

where Γ denotes upsampling operation to match the spatial size when necessary.
By Eq. (6), we generate the final refined affinity B1

ti between the target frame
ItT and each reference frame Iti (i ∈ [1, L− 1]).
Feature Retrieval. For single-frame semantic segmentation, SegFormer [47]

generates the final feature F̂ti ∈ RĤŴ×Ĉ by merging multiple intermediate
features. The final features are informative and directly used to predict the seg-
mentation mask [47]. Using the refined affinity B1

ti and the informative features

F̂ti , we compute the new refined feature representations for the target frame.

Specifically, the feature F̂ti is first downsampled to the size of RHLWL×Ĉ . To
correspond the refined affinity and the informative feature, we sample feature

F̂ti using the token selection mask M̃ti (§3.4) and obtain F̃ti ∈ RS×Ĉ . The new
feature representation for the target frame using the reference is obtained as:

B1
ti ∈ RS×H1×W1 → B1

ti ∈ RH1W1×S , Oti = B1
ti × F̃ti . (7)

Intuitively, this step is to retrieve the informative features from the reference
frame to the target frame using affinity. Computing Eq. (7) for all reference
frames, we obtain the new representations of the target frame as {Oti}T−1

i=0 .
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The final feature used to segment the target frame is merged from {Oti}T−1
i=0

and F̂tL as follows:

OtL =
1

T − 1
Γ (

T−1∑
i=1

Oti) + F̂tL . (8)

Finally, a simple MLP decoder projects OtL to the segmentation logits, and
typical cross-entropy loss is used for training. In the test period, when segmenting
the target frame ItT , the encoder only needs to generate the features for the
current target while the reference frames are already processed in previous steps
and the corresponding features can be directly used.

3.4 Selective Token Masking

As discussed in §1, there should be the same number of reference tokens with
corresponding semantics across scales. Besides, computing cross-frame affinities
requires a lot of computation. Thus, our affinity decoder does not process {Al

ti ∈
RHlWl×HlWl}Ll=1, but rather its downsampled version {Ãl

ti ∈ RHlWl×S}Ll=1.

Here, we explain how to generate {Ãl
ti}

L
l=1, by reducing the number of tokens

in the multi-scale keys {Kl
ti}

L
l=1 before computing Eq. (3).

We exploit convolutional layers to downsample the multi-scale keys to the
spatial size of HL ×WL. Specifically, for the key Kl

ti (l ∈ [1, L− 1]), we process

it by a convolutional layer with both kernel and stride size of ( Hl

HL
, Wl

WL
). As a

result, we obtain new keys K̂l
ti with smaller spatial size, which is given by

Kl
ti ∈ RHlWl×Cl → Kl

ti ∈ RCl×Hl×Wl ,

K̂l
ti = g(Kl

ti ; (
Hl

HL
,
Wl

WL
); (

Hl

HL
,
Wl

WL
)),

K̂l
ti ∈ RCl×HL×WL → K̂l

ti ∈ RHLWL×Cl .

(9)

where g(·; (kh, kw); (sh, sw)) represents a convolutional layer with the kernel size
(kh, kw) and the stride (sh, sw). After this step, we obtain the downsampled keys

{K̂l
ti}

L−1
l=1 , where K̂l

ti ∈ RHLWL×Cl , l ∈ [1, L− 1] and i ∈ [1, T − 1].

To further reduce the number of tokens in {K̂l
ti}

L−1
l=1 , we propose to select

important tokens and discard less important ones. The idea is to first compute
the affinity for the deepest query/key pair (QL and KL

ti), then generate a binary
mask of important token locations, and finally select tokens in keys using the
mask. The process of Binary Mask Generation (BMG) is in the following.
The affinity between the deepest query and key is given by AL

ti ∈ RHLWL×HLWL ,
following Eq. (3). Next, we choose the top-n maximum elements across each
column of AL

ti , given by

ÂL
ti [:, j] = argmax

n
(AL

ti [:, j]), j ∈ [1, HLWL], (10)
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where argmaxn means to take the top-n elements, and ÂL
ti ∈ Rn×HLWL . Then,

we sum over the top-n elements and generate a token importance map Mti as

Mti =

n∑
j=1

(ÂL
ti [j, :]), (11)

in which we have Mti ∈ RHLWL . We recover the spatial size of Mti by re-
shaping it to RHL×WL . The token importance map Mti shows the importance
level of every location in the key feature map. Since Mti is derived from the
deepest/highest level of features, the token importance information it contains
is semantic-oriented and can be shared in other shallow levels. We use it to sam-
ple the tokens in {K̂l

ti}
L−1
l=1 . Specifically, we sample p percent of the locations

with the top-p highest importance scores in Mti , where p is referred as the token
selection ratio. The binary token selection mask with p percent of the locations
highlighted is denoted as M̃ti . The location with the value 1 in M̃ti means the
token importance is within the top-p percent and the corresponding token will
be selected. The location with the value 0 in M̃ti means the token in that loca-
tion is less important and will thus be discarded. The total number of locations
with the value 1 in M̃ti is denoted by S = pHLWL.

Using mask M̃ti , we select p percent of tokens in {K̂l
ti}

L−1
l=1 . The keys after

selection are denoted as {K̃l
ti ∈ RS×Cl}L−1

l=1 . With Ql and K̃l
ti , we compute the

affinities {Ãl
ti ∈ RHlWl×S}L−1

l=1 using Eq. (3). For AL
ti , we also conduct sampling

using M̃ti and obtain ÃL
ti ∈ RHLWL×S . Merging the affinities from all L scales

gives final affinities of {Ãl
ti ∈ RHlWl×S}Ll=1. After computing the affinities for

all reference frames, we have the downsampled affinities {{Ãl
ti}

L
l=1}

T−1
i=1 .

4 Experiments

4.1 Experimental Setup

Datasets. Densely annotating video frames requires intensive manual labeling
efforts. The widely used datasets for VSS are Cityscapes [9] and CamVid [2]
datasets. However, these datasets only contain sparse annotations, which limits
the exploration of temporal information. Fortunately, the Video Scene Parsing in
the Wild (VSPW) dataset [34] is proposed to facilitate the progress of this field.
It is currently the largest-scale VSS dataset with 198,244 training frames, 24,502
validation frames and 28,887 test frames. For each video, 15 frames per second
are densely annotated for 124 categories. These aspects make VSPW the best
benchmark for VSS up till now. Hence, most of our experiments are conducted
on VSPW. To further demonstrate the effectiveness of MRCFA, we also show
results on Cityscapes, for which only one out of 30 frames is annotated.
Implementation details. For the encoder, we use the MiT backbones as in
Segformer [47], which have been pretrained on ImageNet-1K [39]. For VSPW
dataset, three reference frames are used, which are 9, 6 and 3 frames ahead of the
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Methods T t1 t2 t3 mIoU ↑ mVC8 ↑ mVC16 ↑
SegFormer [47] - - - - 36.5 84.7 79.9

MRCFA (Ours)

2 -1 - - 38.0 85.9 81.2
2 -3 - - 38.1 85.5 80.7
2 -6 - - 38.2 85.1 80.3
2 -9 - - 37.4 85.5 81.2
3 -6 -3 - 38.4 87.0 82.1
3 -9 -6 - 38.4 86.9 82.0
4 -9 -6 -3 38.9 88.8 84.4

Table 1. The impact of the selection of reference frames.

p mIoU ↑ mVC8 ↑ mVC16 ↑ Memory (M) ↓ FPS (f/s) ↑
100% 39.4 89.2 84.9 1068 32.9

90% 39.1 89.1 84.8 1035 34.2

70% 39.1 88.2 83.9 969 36.8

50% 38.9 88.8 84.4 903 (15.4%) 40.1 (21.9%)

30% 38.5 86.7 81.9 838 43.5

10% 35.9 86.2 81.7 773 47.2

Table 2. The impact of token selection ratio p. The row which best deals with the
trade-off between performance and computation resources is shown in red.

target, following [34]. Three-scale features from the last three transformer blocks
are used to compute the cross-frame affinities and mine their correlations. For the
Mask-based Token Selection (MTS), we set p=80% for MiT-B0 and p=50% for
other backbones unless otherwise specified. For training augmentations, we use
random resizing, horizontal flipping, and photometric distortion to process the
original images. Then, the images are randomly cropped to the size of 480× 480
to train the network. We set the batch size as 8 during training. The models are
all trained with AdamW optimizer for a maximum of 160k iterations and “poly”
learning rate schedule. The initial learning rate is 6e-5. For simplicity, we perform
the single-scale test on the whole image, rather than the sliding window test or
multi-scale test. The input images are resized to 480× 853 for VSPW. We also
do not perform any post-processing such as CRF [26]. For Cityscape, the input
image is cropped to 512×1024 during training and resized to the same resolution
during inference. And we use two reference frames and four-scale features. The
number of frames being processed per second (FPS) is computed in a single
Quadro RTX 6000 GPU (24G memory).

Evaluation metrics. To evaluate the segmentation results, we adopt the com-
monly used metrics of Mean IoU (mIoU) and Weighted IoU (WIoU), follow-
ing [41]. We also use Video Consistency (VC) [34] to evaluate the category con-
sistency among the adjacent frames in the video, following [34]. Formally, video
consistency VCn for n consecutive frames for a video clips {Ic}Cc=1, is computed

by: VCn = 1
C−n+1

∑C−n+1
i=1

(∩i+n−1
i Si)∩(∩i+n−1

i S
′
i)

∩i+n−1
i Si

, where C ≥ n. Si and S
′

i are

the ground-truth mask and predicted mask for ith frame, respectively. We com-
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pute the mean of video consistency VCn for all videos in the dataset as mVCn.
Following [34], we compute mVC8 and mVC16 to evaluate the visual consistency
of the predicted masks. Please refer to [34] for more details about VC.

4.2 Ablation Studies

We conduct ablation studies on the large-scale VSPW dataset [34] to validate the
key designs of MRCFA. For fairness, we adopt the same settings as in §4.1 unless
otherwise specified. The ablation studies are conducted on MiT-B1 backbone.

Influence of the reference frames. We study the performance of our method
with respect to different choices of reference frames in Tab. 1. We have the fol-
lowing observations. First, using a single reference frame largely improves the
segmentation performance (mIoU). For example, when using a single reference
frame which is 3 frames ahead of the target one, the mIoU improvement over the
baseline (SegFormer) is 1.6%, i.e., 38.1 over 36.5. Further adding more reference
frames, better segmentation performance is observed. The best mIoU of 38.9 is
obtained when using reference frames of 9, 6, and 3 frames ahead of the target.
Second, for the prediction consistency metrics (mVC8 and mVC16), the advan-
tage of exploiting more reference frames is more obvious. For example, using one
reference frame (t1 = −6) gives mVC8 and mVC16 of 85.1 and 80.3, improving
the baseline by 0.4% and 0.4%, respectively. However, when using three reference
frames (t1 = −9, t2 = −6, t3 = −3), the achieved mVC8 and mVC16 are much
more superior to the baseline, improving by 4.1% and 4.5%. The results are rea-
sonable because using more reference frames gives the model a bigger view of the
previously predicted features and thus generates more consistent predictions.
Influence of token selection ratio p. We study the influence of the token
selection ratio p in terms of performance and computational resources in Tab. 2.
Smaller p represents that less number of tokens in the key features are selected
and thus less computation resource is required. Hence, there is a trade-off be-
tween the segmentation performance and the required resources (GPU memory
and additional latency). In the experiments, when reducing p = 100% to 50%,
the performance reduces slightly (0.5 in mIoU) while the GPU memory reduces
by 15.4% and FPS increases by 21.9%. When further reducing p to 10%, the per-
formance largely decreases in terms of mIoU, mVC8 and mVC16. The reason is
that too many tokens are discarded in the reference frames and the remained to-
kens are not informative enough to provide the required contexts for segmenting
the target frame. To sum up, the best trade-off is achieved when p = 50%.

Influence of the feature scales. For VSPW dataset, we use three-scale fea-
tures output from the last three transformer blocks. Here, we conduct an ablation
study on the impact of the used feature scales. The results are shown in Tab. 3.
It can be observed that using the features from the last stage (L = 1) or the
last two stages (L = 2) gives inferior performance while consuming less compu-
tational resources and achieving faster running speed. When using three-scale
features, the best results are achieved in terms of mIoU, mVC8, and mVC16. This
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L mIoU ↑ mVC8 ↑ mVC16 ↑ Params (M) ↓ FPS (f/s) ↑
1 37.5 87.7 83.1 14.8 44.3

2 38.1 87.5 82.5 15.3 43.8

3 38.9 88.8 84.4 16.2 40.1

Table 3. Ablation study on the number of feature scales (L). Using more scales of
features for our method progressively increases the performance.

Methods SAR MAA mIoU ↑ mVC8 ↑ mVC16 ↑ Params (M) ↓
SegFormer - - 36.5 84.7 79.9 13.8

Feature Pyramid - - 37.8 87.0 82.0 16.2

Affinity Decoder
✓ ✗ 37.8 87.1 82.6 16.2
✗ ✓ 37.4 88.3 83.6 16.2
✓ ✓ 38.9 88.8 84.4 16.2

Table 4. Ablation study on the affinity decoder. Within our design, SAR and MAA
are essential parts which contribute to the refinement of the affinity.

is due to the fact that the features in different scales contain complementary in-
formation, and the proposed affinity decoder successfully mines this information
through learning correlations between multi-scale affinities.

Ablation study on affinity decoder. We conduct ablation studies on the
proposed affinity decoder. The results are shown in Tab. 4. Our affinity decoder
processes the multi-scale affinities and generates a refined affinity matrix for
each pair of the target and reference frames. It is reasonable to ask whether this
design is better than the feature pyramid baseline. For this baseline (Feature
Pyramid), we first compute the features for the target frame using the reference
frame features at each scale and then merge those multi-scale features. For fair
comparisons, we use a similar number of parameters for this baseline and other
settings are also the same as ours. The result shows that while Feature Pyramid
performs favorably over the single-frame baseline, our approach clearly surpasses
it. It validates the effectiveness of the proposed affinity decoder.

As presented in §3.2, our affinity decoder has two modules: Single-scale Affin-
ity Refinement (SAR) and Multi-scale Affinity Aggregation (MAA). The abla-
tion study of two modules is provided in Tab. 4. Only using SAR, our method
obtains the mIoU of 37.8, while only using MAA gives the mIoU of 37.4. Both
variants are clearly better than the baseline, validating their effectiveness. Com-
bining both modules, the proposed approach achieves the best mIoU, mVC8,
and mVC16. It shows that both SAR and MAA are essential parts of the affinity
decoder to learn better affinities to help segment the target frame.

4.3 Segmentation Results

The state-of-the-art comparisons on VSPW [34] dataset are shown in Tab. 5. Be-
sides segmentation performance and visual consistency of the predicted masks,
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Methods Backbone mIoU ↑ Weighted IoU ↑ mVC8 ↑ mVC16 ↑ Params (M) ↓ FPS (f/s) ↑
SegFormer [47] MiT-B0 32.9 56.8 82.7 77.3 3.8 73.4
SegFormer [47] MiT-B1 36.5 58.8 84.7 79.9 13.8 58.7
MRCFA (Ours) MiT-B0 35.2 57.9 88.0 83.2 5.2 50.0
MRCFA (Ours) MiT-B1 38.9 60.0 88.8 84.4 16.2 40.1

DeepLabv3+ [6] ResNet-101 34.7 58.8 83.2 78.2 62.7 -
UperNet [46] ResNet-101 36.5 58.6 82.6 76.1 83.2 -
PSPNet [52] ResNet-101 36.5 58.1 84.2 79.6 70.5 13.9
OCRNet [50] ResNet-101 36.7 59.2 84.0 79.0 58.1 14.3
ETC [33] PSPNet 36.6 58.3 84.1 79.2 89.4 -

NetWarp [46] PSPNet 37.0 57.9 84.4 79.4 89.4 -
ETC [33] OCRNet 37.5 59.1 84.1 79.1 58.1 -

NetWarp [46] OCRNet 37.5 58.9 84.0 79.0 58.1 -
TCBst-ppm [34] ResNet-101 37.5 58.6 87.0 82.1 70.5 10.0
TCBst-ocr [34] ResNet-101 37.4 59.3 86.9 82.0 58.1 5.5

TCBst-ocr-mem [34] ResNet-101 37.8 59.5 87.9 84.0 58.1 5.5
SegFormer [47] MiT-B2 43.9 63.7 86.0 81.2 24.8 39.2
SegFormer [47] MiT-B5 48.2 65.1 87.8 83.7 82.1 17.2
MRCFA (Ours) MiT-B2 45.3 64.7 90.3 86.2 27.3 32.1

MRCFA (Ours) MiT-B5 49.9 66.0 90.9 87.4 84.5 15.7

Table 5. State-of-the-art comparison on the VSPW [34] validation set. MRCFA out-
performs the compared methods on both accuracy (mIoU) and prediction consistency.

we also report the model complexity and FPS. According to the model size, the
methods are divided into two groups: small models and large models.

Methods Backbone mIoU ↑ Params (M) ↓ FPS (f/s) ↑
FCN [41] MobileNetV2 61.5 9.8 14.2
CC [42] VGG-16 67.7 - 16.5
DFF [56] ResNet-101 68.7 - 9.7
GRFP [36] ResNet-101 69.4 - 3.2
PSPNet [52] MobileNetV2 70.2 13.7 11.2
DVSN [48] ResNet-101 70.3 - 19.8
Accel [22] ResNet-101 72.1 - 3.6
ETC [33] ResNet-18 71.1 13.2 9.5

SegFormer [47] MiT-B0 71.9 3.7 58.5
MRCFA (Ours) MiT-B0 72.8 4.2 33.3

SegFormer [47] MiT-B1 74.1 13.8 46.8
MRCFA (Ours) MiT-B1 75.1 14.9 21.5

Table 6. State-of-the-art comparison on the
Cityscapes [9] val set.

Among all methods, our MRCFA
achieves state-of-the-art perfor-
mance and produces the most
consistent segmentation masks
across video frames. For small
models, our method on MiT-B1
clearly outperforms the strong
baseline SegFormer [47] by 2.4%
in mIoU and 1.2% in weighted
IoU. In terms of the visual con-
sistency in the predicted masks,
our approach is superior to other
methods, surpassing the second
best method with 4.1% and 4.5%
in mVC8 and mVC16, respec-
tively. For large models, MRCFA
shows similar behavior. The re-
sults indicate that our method is effective in mining the relations between the
target and reference frames through the designed modules: SAR and MAA.

Despite that our approach achieves impressive performance, it adds limited
model complexity and latency. Specifically, compared to SegFormer (MiT-B2),
MRCFA slightly increases the number of parameters from 24.8M to 27.3M and
reduces the FPS from 39.2 to 32.1. The efficiency of our method benefits from
the proposed STM mechanism for which we abandon unimportant tokens.
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Fig. 3. Qualitative results. From top to bottom: the input frames, the predicted masks
of SegFormer [47], the predictions of ours (T = 3, t1 = −3, t2 = −6), the predictions
of ours (T = 4, t1 = −3, t2 = −6, t3 = −9) and the ground-truth masks. Our model
generates better results than the baseline in terms of accuracy and VC.

We conduct additional experiments on the semi-supervised Cityscapes [9]
dataset, for which only one frame in each video clip is pixel-wise annotated.
Tab. 6 shows the results. Similar to VSPW, MRCFA also achieves state-of-the-
art results among the compared approaches under the semi-supervised setting
and has a fast running speed. Besides the quantitative comparisons analyzed
above, we also qualitatively compare the proposed method with the baseline on
the sampled video clips in Fig. 3. For the two samples, our method generates
more accurate segmentation masks, which are also more visually consistent.

5 Conclusions

This paper presents a novel framework MRCFA for VSS. Different from pre-
vious methods, we aim at mining the relations among multi-scale Cross-Frame
Affinities (CFA) in two aspects: single-scale intrinsic correlations and multi-
scale relations. Accordingly, Single-scale Affinity Refinement (SAR) is proposed
to independently refine the affinity of each scale, while Multi-scale Affinity Ag-
gregation (MAA) is designed to merge the refined affinities across various scales.
To reduce computation and facilitate MAA, Selective Token Masking (STM)
is adopted to sample important tokens in keys for the reference frames. Com-
bining all the novelties, MRCFA generates better affinity relations between the
target and the reference frames without largely adding computational resources.
Extensive experiments demonstrate the effectiveness and efficiency of MRCFA,
by setting new state-of-the-arts. The key components are validated to be essen-
tial for our method by ablation studies. Overall, our exploration of mining the
relations among affinities could provide a new perspective on VSS.
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