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Abstract

This paper revisits few-shot 3D point cloud semantic
segmentation (FS-PCS), with a focus on two significant is-
sues in the state-of-the-art: foreground leakage and sparse
point distribution. The former arises from non-uniform
point sampling, allowing models to distinguish the density
disparities between foreground and background for easier
segmentation. The latter results from sampling only 2,048
points, limiting semantic information and deviating from
the real-world practice. To address these issues, we in-
troduce a standardized FS-PCS setting, upon which a new
benchmark is built. Moreover, we propose a novel FS-PCS
model. While previous methods are based on feature op-
timization by mainly refining support features to enhance
prototypes, our method is based on correlation optimiza-
tion, referred to as Correlation Optimization Segmentation
(COSeg). Specifically, we compute Class-specific Multi-
prototypical Correlation (CMC) for each query point, rep-
resenting its correlations to category prototypes. Then, we
propose the Hyper Correlation Augmentation (HCA) mod-
ule to enhance CMC. Furthermore, tackling the inherent
property of few-shot training to incur base susceptibility for
models, we propose to learn non-parametric prototypes for
the base classes during training. The learned base proto-
types are used to calibrate correlations for the background
class through a Base Prototypes Calibration (BPC) module.
Experiments on popular datasets demonstrate the superior-
ity of COSeg over existing methods. The code is available
at github.com/ZhaochongAn/COSeg.

1. Introduction
Rapid advancements in deep neural networks have pro-
pelled the exploration of 3D point cloud understanding in
various applications [5, 8, 26, 31]. Unlike images, point
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Figure 1. Previous feature optimization vs. our correlation op-
timization. Top: Most prior work [11, 25, 29, 45, 56, 58] on FS-
PCS focuses on feature optimization by designing support adap-
tion modules for enhanced prototypes and then making predictions
through non-parametric label propagation (LBP) or cosine simi-
larity (COS), implicitly modeling correlations. Bottom: Instead
of optimizing features, we propose to directly uses correlations as
input to learnable modules, explicitly refining correlations.

clouds inherently capture intricate object structures, en-
abling fine-grained analyses. However, collecting and anno-
tating point cloud data is significantly more labor-intensive
than its 2D counterpart, limiting the scale and semantic di-
versity of existing 3D datasets [1, 4, 7]. To reduce the sub-
stantial human effort required for dataset creation, few-shot
point cloud semantic segmentation (FS-PCS) emerges as a
crucial task, which empowers 3D segmentation models to
generalize to novel classes with few annotated samples.

In the realm of FS-PCS, attMPTI [56] stands as a pi-
oneering model, introducing a multi-prototype transduc-
tive approach that leverages label propagation for predict-
ing segmentation in novel classes. Subsequent works [11,
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25, 29, 45, 51, 58] have consistently built upon the attMPTI
framework, progressively improving overall performance.

However, we identify two significant issues in the cur-
rent FS-PCS setting: (1) The first issue is the foreground
leakage. The common 3D segmentation practice [18, 55]
feeds models with randomly sampled points from the scene,
but the sampling process in FS-PCS is non-uniform, favor-
ing more points in the foreground than in the background.
This leads to foreground leakage, a noticeable density bias
toward foreground classes. This leakage allows previous
models to exploit density disparities for easier segmenta-
tion, sidestepping the need to learn essential knowledge
adaptation patterns for novel classes. Consequently, this is-
sue renders the current benchmark unable to reflect the true
performance of previous models. (2) The second issue is the
sparse point distribution. The current setting samples only
2,048 points during both training and inference due to the
huge computational burden in the label propagation mod-
ule adopted by many FS-PCS methods [29, 45, 56]. How-
ever, this sparse input distribution limits the semantic infor-
mation available to models, hindering effective advances to
improve their recognition ability. In addition, this input de-
viation from real-world scenes diminishes the overall value
of research progress in this domain.

To steer the research in the right direction, we standard-
ize the FS-PCS task by proposing a more rigorous setting.
Specifically, we correct the foreground leakage and im-
prove the framework by enabling the models to process a
large number of points, aligning it more closely with real-
world scenes. In this well-justified setting, we systemati-
cally reevaluate existing methods, establishing a new valid
benchmark for future research.

We further introduce a novel FS-PCS model, named
Correlation Optimization Segmentation (COSeg). As
shown in Fig. 1, existing FS-PCS models are based on fea-
ture optimization, which means that they optimize support
features to enhance prototypes [11, 25, 29, 45, 58] or op-
timize query features through fine-grained interaction with
support features [51]. Instead of operating on features, we
propose to optimize the Class-specific Multi-prototypical
Correlation (CMC) computed for each query point, rep-
resenting its correlations to all category prototypes. This
new correlation optimization paradigm allows direct shap-
ing of relationships between query points and category pro-
totypes, leading to better generalization for FS-PCS than
feature optimization. Building on CMC, we introduce the
Hyper Correlation Augmentation (HCA) module. This
module refines correlations in the hyperspace by actively
interacting them across points and category prototypes.

Moreover, within the meta-learning framework [36,
38, 44] employed by FS-PCS, models undergo training
on seen/base classes and are evaluated on unseen/novel
classes, revealing an inherent susceptibility. Specifically,

these models tend to be susceptible to the familiar base
classes within the test scenes, thereby hindering the ac-
curate segmentation of novel classes [19]. To alleviate
this susceptibility, we propose a novel approach: learn-
ing prototypes for the base classes in a non-parametric and
momentum-driven manner during the training phase. Our
introduced Base Prototypes Calibration (BPC) module
utilizes these learned base prototypes to calibrate correla-
tions for the background within HCA. This calibration ef-
fectively mitigates the base susceptibility problem, enhanc-
ing the model’s accuracy.

We systematically benchmark existing methods in our
well-justified setting and compare COSeg against others on
the S3DIS [1] and ScanNet [7] datasets (Sec. 5.2). Our ex-
periments not only reveal the adverse impact of the previous
task setting but also highlight the impressive performance
of our method. With extensive ablation studies in Sec. 5.3,
we offer further insights into the efficacy of our designs and
showcase the superior capabilities of the CMC paradigm for
FS-PCS, shedding light on future research.

In summary, our contributions include:
• We identify two significant issues in the current FS-PCS

setting: the foreground leakage and sparse point distri-
bution, which are standardized by our introduction of a
rigorous setting and a new benchmark.

• We propose a novel correlation optimization paradigm
operating on Class-specific Multi-prototypical Correla-
tion (CMC), enabling the direct shaping of categorical re-
lationships for query points using the Hyper Correlation
Augmentation (HCA) module.

• We tackle the base susceptibility issue inherent in meta-
learning by introducing non-parametric base prototypes,
along with the Base Prototypes Calibration (BPC) mod-
ule, to calibrate correlations for the background class.

2. Related Work

2.1. 3D Point Cloud Semantic Segmentation

Currently, numerous approaches have emerged for perform-
ing point cloud semantic segmentation in a fully super-
vised manner, categorized into three main groups. The first
group, known as MLP-based methods [9, 10, 12, 14, 32,
33, 49], adopts a shared multi-layer perceptron (MLP) as
the core building block, complemented by symmetric func-
tions for aggregating features. In the second group, point
convolution-based models [2, 13, 17, 21, 23, 24, 39, 40, 48,
54] adapt convolution kernels to the underlying local ge-
ometries due to the unordered nature of point clouds, result-
ing in variations in kernel adaptation techniques. A subset
of them [20, 22, 27, 34, 37, 43, 46, 47, 52, 57] embraces
graph-based representations to mirror the structure of point
clouds. They employ graph convolutions [16] to propagate
and aggregate features across the graph. The third group in-

2



Figure 2. Visualization of two scenes from the S3DIS dataset [1], with the foreground class as door and board for 1-way segmenta-
tion, respectively. Each scene includes six types of point clouds, arranged from left to right: (1) The original point cloud; (2) Ground truth
of all categories; (3) Our corrected input with 20,480 points in a uniform distribution; (4) Input with 20,480 points in a biased distribution;
(5) Input with 2,048 points in a uniform distribution; (6) Input with 2,048 points in a biased distribution, as adopted by previous works.

corporates attention mechanisms [42] to model long-range
dependencies, suitable for handling point cloud irregulari-
ties. As a result, various efforts [18, 28, 30, 35, 50, 55] have
been dedicated to leveraging attention mechanisms for fea-
ture learning in point cloud segmentation. Notably, Strat-
ified Transformer [18] proposes a stratified sampling strat-
egy within the self-attention module to enlarge the receptive
field without incurring significant computational costs.

2.2. Few-shot 3D Point Cloud Segmentation

Given the challenging and labor-intensive nature of point
cloud data collection, the importance of FS-PCS becomes
increasingly apparent. The pioneering work, attMPTI [56],
employs label propagation to exploit relationships among
prototypes and query points. Subsequent works further ex-
pand on this foundation. PAP [11] addresses large intra-
class feature variations by directly adapting prototypes into
the query feature space. QGE [29] adapts background pro-
totypes to match the query context, followed by the holis-
tic rectification of prototypes under the guidance of query
features. 2CBR [58] leverages co-occurrence features of
support and query to calculate bias terms and rectify dif-
ferences between them. BFG [25] introduces bidirectional
feature globalization, activating global perception of proto-
types and point features to better aggregate context infor-
mation. CSSMRA [45] develops a multi-resolution atten-
tion module using both the nearest and farthest points to
enhance context aggregation. SCAT [51] proposes a strat-
ified class-specific attention-based transformer, construct-
ing fine-grained relationships between support and query
features. Notably, these methods all pivot on feature op-
timization, refining either support or query features. In con-
trast, our approach introduces correlation optimization by

refining the multi-prototypical support-query correlations,
which exhibits superior generalization capabilities to novel
classes compared to previous feature optimization.

3. FS-PCS Overview

3.1. Task Description

FS-PCS involves segmenting the foreground semantic cat-
egories in a query point cloud as specified by densely
annotated support point clouds. Formally, following
the episodic paradigm [44], each episode for an N -
way K-shot segmentation task contains a support set
S =

{
{Xn,k

s ,Yn,k
s }Kk=1

}N

n=1
and a query set Q =

{Xn
q ,Y

n
q }Nn=1, where X∗

s/q and Y∗
s/q represent a point

cloud and its corresponding segmentation mask. Within S,
each K-shot group {Xn,k

s ,Yn,k
s }Kk=1 exclusively describes

the n-th semantic class of the total N foreground classes.

The objective, given S and Xn
q , is to predict query masks

that closely match Yn
q by leveraging the knowledge of the

N novel categories provided by N × K support pairs in
S. Two semantic category subsets Ctrain and Ctest, with
Ctrain ∩ Ctest = ϕ, are employed for training and testing,
respectively. Thus, training exclusively utilizes foreground
classes from Ctrain, while testing employs previously un-
seen classes from Ctest. The training in FS-PCS usually en-
compasses two stages, i.e., pre-training and meta-training.
The former primarily trains the backbone to learn meaning-
ful semantic features in a fully-supervised manner, while
the following meta-training focuses on training the model to
transfer knowledge from the support S to the queryQ. Both
meta-training and testing adhere to the episodic paradigm.
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Figure 3. Overall architecture of the proposed COSeg. Initially, we compute CMC for each query point using the backbone features. These
correlations are then forwarded to the subsequent HCA module, which actively mines hyper-relations among correlations across points
and classes. Additionally, we dynamically learn non-parametric base prototypes on the fly and introduce the BPC module to effectively
alleviate the base susceptibility problem. For clarity, we present the model under the 1-way 1-shot setting.

3.2. Issues in the Current Setting

The prevailing FS-PCS task setting, initially introduced
by [56], has been consistently employed in subsequent
works [11, 25, 29, 45, 51, 58]. Despite the previous
progress, we identify two crucial issues within this setting.

Foreground Leakage. The prevailing 3D segmentation
methodology [18, 55] feeds models with randomly sam-
pled points from the scene. However, in the current FS-
PCS setting, the sampling process introduces a bias toward
foreground classes. Specifically, this non-uniform sam-
pling favors foreground classes by sampling more points
for them compared to the background, leading to a notice-
able point density disparity between foreground and back-
ground, thereby leaking the foreground classes to the mod-
els. More details on this biased sampling are available in
the supplementary material. As depicted in Fig. 2, the in-
puts (3), (5) from the corrected uniform sampling show bal-
anced point distributions, while the inputs (4), (6) using bi-
ased sampling exhibit denser distributions in the foreground
(door or board) than in the background. This foreground
leakage induces models to segment foreground classes by
identifying denser regions, instead of learning semantic
knowledge transfer from support to query. This issue, oc-
curring in both training and testing, undermines the bench-
mark’s validity. Addressing this issue, as shown in Sec. 5.2,
unveils a significant performance drop in existing methods,
emphasizing the imperative need for correction.

Sparse Point Distribution. Besides, the current FS-
PCS input is constrained to only 2,048 points due to the
high computational cost of constructing a k-nearest neigh-
bor graph in the label propagation module adopted by many
FS-PCS methods [29, 45, 56]. However, this sparse point

distribution severely limits semantic clarity, making it dif-
ficult to distinguish objects. For instance, in Fig. 2, it is
even challenging for humans to distinguish the door and
surrounding wall in the 2048-point input (5th column) in
the 1st row. The same applies to the 2nd row to discern
board from other classes like window. These sparsely pop-
ulated, semantically limited inputs introduce significant am-
biguities, hindering the model’s capacity to exploit seman-
tics in the scenes. Furthermore, this deviation from real-
world scenes limits the scope of current research progress.

To address these issues, we introduce a more rigorous
setting for FS-PCS. In this standardized setting, we increase
the number of input points tenfold to 20,480 and elimi-
nate foreground leakage through uniform sampling. As de-
picted in Fig. 2, the input (3) from this rigorous setting
provides clearer scene representations and uniform distribu-
tions, aligning the task setting more closely with real-world
scenarios. The new benchmark results under this setting are
presented in Sec. 5.2.

4. Methodology
Instead of employing the traditional feature optimization
[11, 25, 29, 45, 51, 58], our proposed COSeg is built upon
the correlation optimization paradigm with CMC, allowing
for direct refinement of relationships between each query
point and category prototypes. Fig. 3 illustrates the pipeline
of COSeg. Without loss of generality, we present our model
under the 1-way 1-shot setting in the following sections.

4.1. Class-specific Multi-prototypical Correlation

Given the backbone Φ, we extract support features Fs =
Φ(Xs) ∈ RNS×D and query features Fq = Φ(Xq) ∈
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RNQ×D, where D is the channel dimension, NS and NQ

are the number of points in Xs and Xq, respectively. Fore-
ground prototypes Pfg and background prototypes Pbg are
obtained through two steps: sample NO seeds in the co-
ordinate space based on farthest point sampling, and then
conduct point-to-seed clustering [56] as follows:

Pfg = Fclus(Fs ⊙Ys,Sfg), Sfg = Ffps(Ls ⊙Ys),

Pbg = Fclus(Fs ⊙ Ỹs,Sbg), Sbg = Ffps(Ls ⊙ Ỹs),
(1)

where ⊙ is the Hadamard product, Ls denotes the xyz co-
ordinates of support points from Xs, Ỹs is the inverse mask
of Ys, and Ffps represents the farthest point sampling op-
eration. Continuously, Sfg/bg is the set of indices corre-
sponding to the seeds sampled by Ffps, and Fclus stands for
the clustering operation. After this, we have Pfg,Pbg ∈
RNO×D with NO prototypes per category.

Next, we compute the cosine similarities of query points
with respect to Pfg and Pbg, and obtain the correlations
Cfg ∈ RNQ×NO and Cbg ∈ RNQ×NO , given by:

Cfg =
Fq ·P⊺

fg

∥Fq∥
∥∥∥P⊺

fg

∥∥∥ , Cbg =
Fq ·P⊺

bg

∥Fq∥
∥∥∥P⊺

bg

∥∥∥ . (2)

Finally, the correlations Cfg and Cbg are both expanded
to the size of RNQ×1×NO . We concatenate them along the
second dimension and project the last dimension back to D
using an MLP Fmlp, as follows:

C0
q = Fmlp(Cfg ⊕Cbg) ∈ RNQ×NC×D, (3)

where ⊕ is the concatenation operation. Eq. (3) yields the
initial CMC. Notably, the second dimension NC of C0

q is
the number of classes, which is 2 under this 1-way example.

The initial correlations C0
q comprise the correlations of

each query point with a number of prototypes for all classes,
which allows the subsequent modules to directly shape the
relations between the query and support. Such correlation
optimization leads to enhanced generalization for FS-PCS
compared to the traditional feature optimization [11, 25, 29,
45, 51, 58], as demonstrated in Sec. 5.3.

4.2. Hyper Correlation Augmentation

Our proposed CMC denotes the correlations of each query
point to all category prototypes. To enhance the correla-
tions, we introduce the Hyper Correlation Augmentation
(HCA) module, leveraging two underlying relationships.
First, the query points are all related and dependent on each
other. Their correlations to all prototypes are also con-
nected, leading to point-point relations. Second, classify-
ing a single point into foreground or background depends
on its relative correlations to foreground or background
prototypes, forming foreground-background relations. For
an N -way setting, this extends to foregrounds-background

relations, considering the relative correlations among all
classes. The proposed HCA refines correlations by exploit-
ing both point-point and foreground-background relations.
Linear Attention. Due to the irregular nature of 3D
point clouds, the attention mechanism with the permutation-
invariant property is well-suited for point cloud processing.
Here, we adopt linear attention [15] for its global receptive
field and superior linear computation efficiency.

Given an input sequence C ∈ RN×D, applying linear
transformations to C results in Q,K,V ∈ RN×D. Using
qi, ki, and vi ∈ R1×D to denote the i-th token vector from
Q, K, and V, respectively, the standard attention [42] is:

v̂i =

∑N
j=1⟨qi,kj⟩vj∑N
j=1⟨qi,kj⟩

, ⟨qi,kj⟩ = exp(
qik

⊺
j√

D
), (4)

where ⟨·, ·⟩ represents the similarity measure function.
Through the lens of kernels, linear attention defines

⟨qi,kj⟩ = φ(qi)φ(kj)
⊺ in Eq. (4) and utilizes the asso-

ciative property of matrix multiplication to obtain:

v̂i =
φ(qi)

∑N
j=1 φ(kj)

⊺vj

φ(qi)
∑N

j=1 φ(kj)⊺
, (5)

where φ(x) = elu(x) + 1 with elu(·) as the exponential
linear unit [6]. Consequently, the computation cost of linear
attention is O(ND2), significantly more favorable than the
standard O(N2D) complexity.
Hyper Correlation Augmentation. Based on linear atten-
tion, we introduce the HCA module to enhance the correla-
tions through active interactions across points and classes.
Since we stack the HCA module L times as in Fig. 3, the
module input is denoted as Cl

q. For each point, we first
attend its correlations with those of all other points. We
permute Cl

q with the class dimension as its first dimension
and then compute linear attention across points:

Cl+1
q = Flnatt(T (Cl

q)) ∈ RNC×NQ×D, (6)

where T transposes the first two dimensions, and Flnatt

represents the linear attention layer to process features in-
dependently along the first dimension. Following the atten-
tion layer, an MLP is applied to each point separately and
identically to further enhance the correlations:

Cl+2
q = Fmlp(C

l+1
q ) ∈ RNC×NQ×D. (7)

Note that multi-head attention [42], layer normalization [3],
and residual connections are omitted here for simplicity.

After that, we leverage the foreground-background rela-
tions to facilitate learning categorical relationships and de-
termining the best-fit class for each point’s semantics. We
rearrange the dimensions such that Cl+2

q ∈ RNC×NQ×D →
RNQ×NC×D, and apply linear attention, given by:

Cl+3
q = Flnatt(T (Cl+2

q )) ∈ RNQ×NC×D. (8)
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The next MLP transforms Cl+3
q to Cl+4

q as in Eq. (7).
Through this module, CMC can interact not only across

the spatial dimension but also across the categorical space.
This results in comprehensive contextual dependencies, sig-
nificantly enhancing meta-learning performance.

4.3. Base Prototypes Calibration

Since the training concentrates on classes in Ctrain, mod-
els are inherently biased towards these base classes, hinder-
ing the segmentation of novel classes [19]. To address it,
we propose employing non-parametric prototypes for base
classes through the BPC module to alleviate the base bias.

Let {pb|pb ∈ R1×D}Nb

b=1 be a set of non-parametric pro-
totypes corresponding to Nb = |Ctrain| base classes. Dur-
ing meta-training, these prototypes are zero-initialized and
evolve continuously. Specifically, given Fs, Fq, and their
binary annotations Yb

s , Yb
q of the b-th base class, we calcu-

late the Masked Average Pooling (MAP) [53] for each base
class present in the current point clouds:

p′
b = Fpool(Fs/q⊙Yb

s/q) ∈ R1×D, (9)

where Fpool represents the MAP operation. Then, the base
prototypes can be updated at each training episode as:

pb ← µpb + (1− µ)p′
b, (10)

where µ ∈ [0, 1] is a momentum coefficient.
When segmenting the novel classes, the query point cor-

responding to the base classes should be considered as back-
ground. Therefore, leveraging base prototypes, we intro-
duce the BPC module to calibrate correlations to the back-
ground class, mitigating potential interference from base
susceptibility. Specifically, we calculate the base correla-
tions Cbase between the query and base prototypes:

Cbase =
Fq · I({pb}Nb

b=1)
⊺

∥Fq∥
∥∥∥I({pb}Nb

b=1)
⊺
∥∥∥ ∈ RNQ×Nb , (11)

where I concatenates all the vectors in the set, such that
I({pb}Nb

b=1) ∈ RNb×D. Afterward, we obtain the base
guidance for each query point Cguide = Fmax(Cbase) ∈
RNQ , where Fmax is max pooling on each row in Cbase.
Then, the background correlations are calibrated by Cguide

before interacting with foreground correlations, as in Fig. 3:

Cl+2
q [1, ·, ·] = Ffc(C

l+2
q [1, ·, ·]⊕D(Cguide)), (12)

where Cl+2
q [1, ·, ·] ∈ RNQ×D selects the background cor-

relations (the last at the NC-dim) from CMC, D expands
Cguide as RNQ → RNQ×D, and Ffc is a fully connected
layer. During meta-training, we exclude the base prototypes
of the current target classes in Eq. (11). For evaluation, the
base prototypes are frozen and utilized without exclusion.

Finally, C4L
q is decoded to the final segmentation result

Ŷq using the decoder. Another MLP is employed to gen-
erate base class predictions using query features Fq. The
entire model is optimized using cross-entropy (CE) loss:

L = CE(Fmlp(Fq), {Yb
q}b) + CE(Ŷq,Yq). (13)

5. Experiments
5.1. Experimental Setting

Network Architecture. We use the first three blocks from
the Stratified Transformer [18] as our backbone. The last
two blocks produce features with resolutions 1/4 and 1/16
of the original point cloud. We perform interpolation [33]
to 4× upsample the 1/16 feature map and concat it to the 1/4
features, followed by an MLP to obtain final features with
a channel dimension of 192. For the S3DIS dataset, we
employ a 2-layer HCA module. Due to the richer semantics
of ScanNet [7], we use 4 layers of HCA. The final decoder
consists of one KPConv [40] layer followed by an MLP.
Implementation Detail. We employ the data processing
strategy from [18, 56]. The 3D scene is divided into 1m ×
1m blocks to increase data samples, and raw input points are
grid-sampled with a grid size of 0.02m. After voxelization,
if the input point count exceeds 20,480, we randomly sam-
ple 20,480 points to control the input size. Data augmenta-
tion and pre-training follow [18] where our backbone is pre-
trained on each fold for 100 epochs. Meta-training involves
40,000 episodes, using the AdamW optimizer with a learn-
ing rate of 0.00005 and weight decay of 0.01. During test-
ing, we sample 1,000 episodes per class in the 1-way setting
and 100 episodes for each combination in the 2-way setting
for more stable evaluations. We use 100 prototypes for each
class (NO = 100). In the k-shot setting, when k > 1, we
sample NO/k prototypes from each shot and concatenate
them to obtain NO prototypes. For benchmarking previ-
ous models, we select methods with publicly available code,
namely AttMPTI [56], QGE [29], and QGPA [11].

5.2. Main Results

Effects of Foreground Leakage. As discussed in Sec. 3.2,
the foreground leakage problem can significantly distort
model training and evaluation. Tab. 1 compares the perfor-
mance of previous methods [11, 29, 56] in two settings:
one with foreground leakage (w/ FG) and the other with-
out foreground leakage (w/o FG) across two datasets. In
each setting, we retrain the models and evaluate them on
the corresponding test set. The results reveal a substantial
mIoU drop after correcting foreground leakage consistently
across all splits for 1-way 1/5-shot tasks. On S3DIS, the
highest mIoU of 81.80% (w/ FG) for the 5-shot task drops
dramatically to 45.52% after removing foreground leakage,
marking a significant 36.28% drop. Similarly, on ScanNet,
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Methods 1-shot (S3DIS) 5-shot (S3DIS) 1-shot (ScanNet) 5-shot (ScanNet)

S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

w/ FG
AttMPTI [56] 64.89 66.15 65.52 76.56 83.08 79.82 62.14 58.65 60.39 68.79 68.66 68.73
QGE [29] 74.05 73.61 73.83 74.65 83.21 78.93 63.50 57.61 60.56 70.72 65.68 68.20
QGPA [11] 62.72 61.95 62.33 76.30 87.29 81.80 56.47 51.72 54.10 81.57 72.75 77.16

w/o FG
AttMPTI [56] 41.56 41.27 41.41 50.55 46.13 48.34 33.36 31.81 32.58 37.95 36.30 37.12
QGE [29] 46.27 47.76 47.02 47.74 59.77 53.76 37.72 34.64 36.18 48.73 39.95 44.34
QGPA [11] 35.62 41.13 38.38 43.54 47.50 45.52 40.03 35.54 37.78 46.17 42.24 44.20

Table 1. Comparisons in the mIoU metric between with foreground leakage (w/ FG) and without foreground leakage (w/o FG) for
existing methods. The results are for 1-way segmentation setting. S0/S1 refers to the i-th split for inference. Here, we adopt the previous
FS-PCS setting [56], i.e., using DGCNN [47] as the backbone and sampling 2,048 points for each scene.

Methods 1-way 1-shot 1-way 5-shot 2-way 1-shot 2-way 5-shot

S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

S3DIS [1]

AttMPTI [56] 36.32 38.36 37.34 46.71 42.70 44.71 31.09 29.62 30.36 39.53 32.62 36.08
QGE [29] 41.69 39.09 40.39 50.59 46.41 48.50 33.45 30.95 32.20 40.53 36.13 38.33
QGPA [11] 35.50 35.83 35.67 38.07 39.70 38.89 25.52 26.26 25.89 30.22 32.41 31.32
COSeg (ours) 46.31 48.10 47.21 51.40 48.68 50.04 37.44 36.45 36.95 42.27 38.45 40.36

ScanNet [7]

AttMPTI [56] 34.03 30.97 32.50 39.09 37.15 38.12 25.99 23.88 24.94 30.41 27.35 28.88
QGE [29] 37.38 33.02 35.20 45.08 41.89 43.49 26.85 25.17 26.01 28.35 31.49 29.92
QGPA [11] 34.57 33.37 33.97 41.22 38.65 39.94 21.86 21.47 21.67 30.67 27.69 29.18
COSeg (ours) 41.73 41.82 41.78 48.31 44.11 46.21 28.72 28.83 28.78 35.97 33.39 34.68

Table 2. Comparisons in the mIoU metric between our method and baselines in the new FS-PCS setting. The best-performing results
are highlighted in bold. Previous methods apply the same backbone as ours for fair comparisons.

Query Ground Truth COSeg QGESupport Support Mask
Figure 4. Qualitative comparisons between our proposed model COSeg and QGE [29]. Each row, from top to bottom, represents the 1-way
1-shot task with the target category as floor (blue), chair (red), and table (purple), respectively.

a substantial 32.96% mIoU drop is observed from 77.16%
to 44.20% for the 5-shot task. On average, across the three
methods, the mIoU drop from removing foreground leakage
is 27.97% on S3DIS and 26.16% on ScanNet. This notable
performance gap underscores that previous methods largely
rely on the density differences exposed by foreground leak-
age to achieve seemingly superior performance. This un-
derscores the immediate need for our new corrected setting
for facilitating the research in FS-PCS.

Comparison with Previous Methods. In Tab. 2, we
present the results for 1/2-way 1/5-shot experiments on
two datasets. Our model demonstrates a significant perfor-
mance advantage, establishing new state-of-the-art records

across all experiments. For instance, in the 1-way 1-shot
scenario, we achieve notable mIoU improvements of 6.82%
and 6.58% over the second-best model, QGE, on S3DIS
and ScanNet, respectively. Extending to the 2-way 5-shot
task, our model outperforms the previous best performance
by 2.03% (S3DIS) and 4.76% (ScanNet) in mIoU. Similar
substantial improvements are observed in all other settings.
These consistent enhancements underscore the efficacy of
our model within our proposed rigorous FS-PCS setting.

Qualitative Results. In Fig. 4, we visualize predic-
tions from our method (5th column) and the previous best
method, QGE (6th column). Our method clearly achieves
better segmentation results than the previous best method.
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Optimization HCA BPC 1-shot 5-shot

feature 30.67 32.58
correlation 39.93 42.33
correlation ✓ 43.77 47.98
correlation ✓ ✓ 47.21 50.04

Table 3. Ablation study of different design
choices in COSeg.

NO 1-shot 5-shot

50 43.50 46.43
100 47.21 50.04
150 47.41 52.33
200 48.27 47.90

Table 4. Effects of the num-
ber of prototypes per class.

L 1-shot 5-shot

1 44.19 45.93
2 47.21 50.04
3 46.12 46.89

Table 5. Impact of the
number of HCA layers.

µ 1-shot 5-shot

0.99 46.91 50.26
0.995 47.21 50.04
0.999 47.40 49.85

Table 6. Ablation on the
momentum coefficient.

Query Ground Truth w/ BPC w/o BPCSupport Support Mask

Figure 5. Visual comparisons between our models with BPC (w/ BPC) and without BPC (w/o BPC). Each row corresponds to the 1-way
1-shot task targeting bookcase (green) and chair (red), respectively, arranged from top to bottom.

5.3. Ablation Study

In this section, we report the mIoU results as the mean of
all splits of S3DIS under the 1-way 1/5-shot settings.
Different Design Choices. We first assess our proposed
correlation optimization paradigm. The baseline model
consists of only the backbone and decoder from our ap-
proach. We compare the performance of forwarding cor-
relations (correlation optimization) and forwarding features
(feature optimization) to the decoder after the backbone.
Feature optimization uses the support prototype to directly
segment the target object as in [41]. As shown in Tab. 3,
transitioning solely from forwarding features to forwarding
correlations results in a significant 9.26% and 9.75% in-
crease in mIoU under 1/5-shot settings, respectively. These
results affirm the superiority of our proposed correlation
optimization paradigm in enhancing generalization for FS-
PCS compared to the traditional feature optimization.

Furthermore, we explore the impact of HCA and BPC
in Tab. 3. Adding HCA to the baseline with correlation
optimization leads to a 3.84%/5.65% mIoU improvement
for the 1-shot/5-shot setting, demonstrating the efficacy
of HCA in enriching contextual information for correla-
tions. Incorporating BPC with HCA results in an additional
3.44%/2.06% growth in mIoU for the 1-shot/5-shot setting,
highlighting the significance of BPC in calibrating back-
ground correlations. Fig. 5 contrasts visual segmentation
results between our models with BPC and without BPC.
The absence of BPC exhibits base susceptibility issues, with
false activations of base classes (wall or door) in the scenes.
Conversely, the inclusion of our BPC design enables mod-
els to effectively mitigate susceptibility, ensuring accurate
segmentation of novel classes.

Number of Prototypes. Tab. 4 shows increasing the num-
ber of prototypes to 150 improves performance. For a fair
comparison with others, we set NO = 100 by default.
Number of HCA Layers. We vary the number of HCA lay-
ers from 1 to 3 and report the results in Tab. 5. It shows that
using two layers achieves the best performance on S3DIS.
Momentum Coefficient. The momentum coefficient µ
controls the evolving rate of our base prototypes. We ex-
plore its effects on performance in Tab. 6. The results show
that varying µ causes minimal differences in mIoU, demon-
strating the robustness of our proposed BPC module.

6. Conclusion
In this paper, we identify two critical issues in FS-PCS:
foreground leakage and sparse point distribution, which
have undermined the validity of previous progress and hin-
dered further advancements. To rectify these issues, we
standardize FS-PCS by introducing a rigorous setting along
with a new benchmark. Moreover, we propose a novel cor-
relation optimization paradigm that operates on CMC, di-
verging from the traditional feature optimization approach
used by all previous FS-PCS models. Building on this
paradigm, our model COSeg incorporates HCA for effec-
tive contextual learning and BPC for background correla-
tion adjustment, achieving state-of-the-art results across all
FS-PCS settings. We hope that our work could serve as the
foundation for FS-PCS and shed light on future research.
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Appendix
A. More Details about Foreground Leakage

As discussed in Sec. 3.2, the current few-shot 3D point
cloud semantic segmentation (FS-PCS) setting [11, 25, 29,
45, 51, 56, 58] employs a non-uniform sampling mecha-
nism with a bias toward foreground classes. This biased
sampling algorithm samples more points from foreground
objects than from the background, resulting in a notice-
able point density disparity between foreground and back-
ground.

More precisely, the biased sampling algorithm can be
outlined in Alg. 11. In line 1, it firstly obtains the input fore-
ground point set PFG that includes all the input points be-
longing to the foreground class C with respect to the current
few-shot task. Then, from lines 2 to 6, it calculates the quan-
tity NFG that will be used for sampling foreground points
in the output. NFG maintains a proportional relationship
to the presence of foreground points in the input data when

1The corresponding source code can be found at the link.

n ≥ m. Next, in line 7, it selects NFG points exclusively
from the input foreground point set PFG. However, in line
8, the remaining m − NFG points are sampled from the
entire input points X = {P1, ..,Pn}, which still includes
the foreground points in PFG. Consequently, this double-
sampling of foreground points in these two steps leads to
foreground objects having a denser distribution of points in
the final output than their background counterparts.

Algorithm 1: The biased sampling algorithm
Data: input point cloud X with n points

{P1, ..,Pn}, sampling number m,
foreground class C with respect to current
few-shot task

Result: sampled points {Pi1 , ..,Pim} from X
1 PFG ← {Pi | label of(Pi) = C};
2 if n < m then
3 NFG ← |PFG|;
4 else
5 NFG ← m |PFG|

n ;
6 end
7 Res1 ← sample NFG points from PFG;
8 Res2 ← sample m−NFG points from X;
9 {Pi1 , ..,Pim} ← Res1 ∪Res2;

We also present additional visualizations in Fig. 6. Both
the theoretical analysis and visualizations clearly demon-
strate that this biased sampling leaks foreground class infor-
mation to models through density disparity. Consequently,
the models no longer need to excel at learning essential
knowledge adaptation patterns for few-shot tasks; instead,
they can simply segment the target by detecting denser re-
gions. This foreground leakage undermines the validity of
existing benchmarks of previous models.

B. More Implementation Details

We employ the first three blocks from the Stratified Trans-
former [18] as our backbone. Our backbone architecture
aligns with the one used for the S3DIS dataset [1] in [18],
indicating that we maintain consistency in backbone archi-
tectures for both S3DIS and ScanNet [7]. Unlike [18], we
do not employ different Stratified Transformer architectures
for these two datasets. The momentum coefficient µ within
the BPC module is set to 0.995. For both datasets, our input
features include both the XYZ coordinates and RGB colors.
The training and testing are using 4 RTX 3090 GPUs.

C. More Qualitative Results

We present additional qualitative results in Fig. 7, com-
paring our method (5th column) with the previous best-
performing method, QGE (6th column). Besides, Fig. 8
showcases more visual comparisons between our models
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Figure 6. Visualization of various scenes from the S3DIS dataset [1], with the target class for the 1-way few-shot task labeled at
the leftmost of each scene. Each scene includes six types of point clouds, arranged from left to right: (1) The original point cloud; (2)
Ground truth of all categories; (3) Our corrected input with 20,480 points in a uniform distribution; (4) Input with 20,480 points in a
biased distribution; (5) Input with 2,048 points in a uniform distribution; (6) Input with 2,048 points in a biased distribution, as adopted by
previous works.

with BPC (w/ BPC, 5th column) and without BPC (w/o
BPC, 6th column).

We have the following observations from the visual
comparisons: (1) Our method yields visually better re-
sults than the previous best-performing method, highlight-
ing the superiority of our proposed correlation optimization
paradigm in enhancing the generalization ability for few-
shot tasks. (2) The lightweight BPC module, equipped with
non-parametric base prototypes, effectively mitigates the

base susceptibility issue inherent in models. This ensures
accurate segmentation of novel classes, further validating
the efficacy of our approach.
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Query Ground Truth COSeg QGESupport Support Mask

BoardBookcaseTable Chair

Figure 7. Qualitative comparisons between our proposed model COSeg and QGE [29]. Each row, from top to bottom, represents the 1-way
1-shot task with the target category as table (purple), chair (red), bookcase (green) and board (pink), respectively.

Query Ground Truth w/ BPC w/o BPCSupport Support Mask

Figure 8. Qualitative comparisons between our models with BPC (w/ BPC) and without BPC (w/o BPC). Each row has the target class
under the 1-way 1-shot task as table (purple) and chair (red), respectively, arranged from top to bottom.
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