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Abstract

Exploiting multi-level context information to cost vol-
ume can improve the performance of learning-based stereo
matching methods. In recent years, 3-D Convolution Neu-
ral Networks (3-D CNNs) show the advantages in regular-
izing cost volume but are limited by unary features learning
in matching cost computation. However, existing methods
only use features from plain convolution layers or a sim-
ple aggregation of multi-level features to calculate cost vol-
ume, which is insufficient because stereo matching requires
discriminative features to identify corresponding pixels in
rectified stereo image pairs. In this paper, we propose a
unary features descriptor using multi-level context ultra-
aggregation (MCUA), which encapsulates all convolutional
features into a more discriminative representation by intra-
and inter-level features combination. Specifically, a child
module that takes low-resolution images as input captures
larger context information; the larger context information
from each layer is densely connected to the main branch of
the network. MCUA makes good usage of multi-level fea-
tures with richer context and performs the image-to-image
prediction holistically. We introduce our MCUA scheme for
cost volume calculation and test it on PSM-Net. We also
evaluate our method on Scene Flow and KITTI 2012/2015
stereo datasets. Experimental results show that our method
outperforms state-of-the-art methods by a notable margin
and effectively improves the accuracy of stereo matching.

1. Introduction
Stereo matching, also known as disparity estimation,

aims to find corresponding points in a pair of rectified stereo
images. It serves as an essential subclass of computer vision
[26, 28]. Cost volume plays a vital role for Convolution
Neural Networks (CNNs) based stereo matching methods,
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which has been validated by [28]. Traditional 1-D correla-
tion along the disparity line enables to generate a 3-D stereo
cost volume [14, 15], but it loses lots of information due to
its multiplicative approximation to the volume. As an im-
provement, a simple concatenation, instead of 1-D corre-
lation, is implemented to combine the unary features from
left and right inputs across each disparity level to generate
a 4-D cost volume, and then 3-D CNNs are incorporated in
the context to regularize this 4-D cost volume [9]. 4-D cost
volume based methods [9, 2] usually outperform 3-D cost
volume [14, 11] based methods, because 4-D cost volume
can preserve the feature dimensions.

Skip connection [7, 17] in CNNs encourages the inte-
gration of hierarchical representations, and may also con-
tribute to stereo matching for the improvement of the cost
volume [29, 4]. Stereo matching is a regression problem
which aims to achieve pixel-wise dense prediction, but it
usually generates discontinuity in the occluded areas, and it
suffers from aperture problem in texture-less regions such
as sky or other flat areas [9], so it is more concerned with
the merge of multi-level context information. In DenseNets
[8] and DLA [25], large receptive fields are achieved at deep
stages of a network, but they only refer to intra-level com-
bination of features and enable not to obtain large receptive
field at shallow stages. Therefore, it lacks enough global in-
formation for more context information when using dense
connection or DLA scheme on the matching cost calcula-
tion in the stereo matching task. This problem makes these
two architectures be limited when learning context informa-
tion.

To solve this problem, we improve the discriminative
ability of unary features for matching cost calculation by in-
troducing Multi-level Context Ultra-Aggregation (MCUA)
scheme which combines the features at the shallowest,
smallest scale and deeper, larger scales using just “shallow”
skip connections. Except for intra-level combination in-
spired by DenseNets [8] and DLA [25], MCUA contains an
independent child module which introduces the inter-level
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Figure 1. DenseNets and DLA belong to the family of Higher Order RNNs. (a) Dense connection scheme; (b) DLA scheme between
neighboring groups (red box), consisting of HDA (combining stages in groups) and IDA (combining groups); (c) Higher Order RNNs
framework. The orange solid lines indicate the skip connections between each two stages.

combination scheme. The main contributions of this pa-
per include i) we propose MCUA for both intra- and inter-
level features aggregation and formulate it as a Higher Or-
der RNN; ii) the experimental results show that MCUA im-
proves matching cost calculation significantly.

2. Related Work
Stereo matching can be implemented using multistage

techniques [1] which typically include four main steps,
i.e., matching cost computation, cost aggregation, dispar-
ity computation and optimization, and disparity refinement
[20]. Early learning-based methods adopted neural net-
works to replace one or more stages in the traditional stereo
pipeline [27, 26, 19, 14, 21]. Some approaches achieve bet-
ter performance by integrating all steps into a whole net-
work for joint optimization. Mayer et al. [15] introduced
a 1-D correlation layer to integrate the unary features along
the disparity line, which can provide a 3-D cost volume for
end-to-end training. Pand et al. [18] proposed a cascaded
CNN architecture by first obtaining an initial disparity map,
and then employing residual learning for refinement. Liang
et al. [11] presented feature constancy to measure the cor-
respondence between two input images, which is then used
to refine the disparity. EdgeStereo, developed by song et
al. [23], introduces a multi-task architecture to generate the
final disparity map by integrating a one-stage stereo net-
work and a proposed edge detection network. SegStereo,
proposed in [24], introduces two incorporation strategies of
semantic cues, including semantic information embedding
and semantic loss regularization added to softmax loss.

Since 1-D correlation is a multiplicative approximation
to the stereo cost volume, it will lose some useful informa-
tion and is thus harmful to context learning. GC-Net [9]
introduces the 4-D cost volume to incorporate context in
cost volume regularization. This method does not collapse
the feature dimension when generating stereo cost volume.

Recently, PSM-Net [2] exploit the context information for
stereo matching by applying an SPP module [6] on cost vol-
ume calculation and utilizing three stacked 3-D hourglass
networks to regularize this 4-D cost volume. StereoNet [10]
is a real-time end-to-end network for stereo matching, in
which a cost volume with meager resolution but encoding
all information is first used to obtain an initial disparity map,
and then a learned upsampling function is used for refine-
ment. In our work, we apply a novel aggregation pattern,
MCUA, to generate the unary features with better context
support. The experimental results demonstrate the effec-
tiveness of MCUA in stereo matching.

3. Reviewing Feature Aggregation Schemes
In this section, we first review DenseNets [8] and DLA

[25], and formulate these two aggregation schemes with
Higher Order RNNs [22, 12, 3]. Then, we discuss the
limitations of features aggregation when applying these
schemes into stereo matching.

3.1. DenseNets

DenseNets [8] apply a dense connection scheme on the
group in which feature maps generated by all stages have
the same resolution and scale. As shown in Fig. 1(a), the
signal “hk” indicates k-th stage of this block, it receives the
feature maps from all preceding stages, h0, ..., hk−1, and
shares its feature maps with all its subsequent stages. It can
be formulated as follows:

hk = rk[fk−1
t=0 q

k
t (h

t)] (1)

where qkt (h
t) is the feature extraction function, rk(·) is the

transmit function to transform the gathered information be-
fore this information flowing into the k-th stage, and f de-
notes the concatenation operation for data fusion.

Fig. 1(c) shows the framework of Higher Order RNNs,
where the signal “hk” indicates the hidden state of the
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Figure 2. The diagrammatic sketch of our proposed network (EMCUA). It is constructed based on PSM-Net [2] by applying MCUA on the
architecture of matching cost calculation and adding a residual module at the end. A pair of stereo images (i.e., Left, Right) pass through
the network for disparity prediction (i.e., Output3). Fig. 3 shows the detail of the updated architecture of matching cost calculation.

RNNs at k-th step, rk(·) indicates a transform function, the
symbol “z−1” indicates a time-delay unit, and “f ” denotes
the operation for aggregation (e.g., summation, concatena-
tion, etc.). In the Higher Order RNNs, all functions share
the same weights, i.e., ∀t, k, qkt (·) ≡ qt(·) and ∀k, rk(·) ≡
r(·). When the signals share parameters [3], DenseNets can
be represented as Higher Order RNNs, which shows that
DenseNets belong to the family of Higher Order RNNs.
DenseNets cannot merge features across scales and reso-
lutions, which loses lots of low-level information. In this
paper, we develop a general feature aggregation scheme to
solve this problem.

3.2. DLA

As shown in Fig. 1(b), a network with nine stages is de-
signed as the backbone, on which we apply DLA scheme.
Due to different scales of output features, stages of this
backbone can be divided into three groups (represented by
red boxes): h0, . . . , h3 for the first group, h4, . . . , h7 for the
second group, and h8 for the third group. DLA consists of
two aggregation schemes [25]: (i) the Iterative Deep Aggre-
gation (IDA) merges features across scales and resolutions,
in which the outputs of aggregation nodes are downsampled
before merging with other features. (ii) the Hierarchical
Deep Aggregation (HDA) merges the outputs of the aggre-
gation nodes into the backbone serving as the inputs to the
next sub-tree. This makes each stage only selectively use a
subset of outputs from all previous stages, as illustrated in
Fig. 1(b), deleting the short connections with gray dashed
lines by taking qkt (·) = 0. We follow DenseNets shown in

Eq. (1) to describe DLA as follows:

hk =


rk[

∑k−1
t=0 q

k
t (h

t)], k = 4n

rk[qkk−1(h
k−1)], k = 4n+ 1

rk[qkk−2(h
k−2) + qkk−1(h

k−1)], k = 4n+ 2

rk[qkk−1(h
k−1)], k = 4n+ 3

(2)
where n = 0, 1, 2, . . . indicates the index of the group. Sim-
ilarly, the DLA scheme can also be represented as the form
of Higher Order RNNs. However, the fusion in DLA only
refers to the intra-level combination. To overcome this dis-
advantage, we introduce an independent child module to
fuse features with the inter-level combination, where large
receptive fields can be obtained at shallow stages.

4. Network Architecture
In this section, we introduce each part of the proposed

network which is developed from PSM-Net [2]. An overall
illustration is shown in Fig. 2.

4.1. MCUA Scheme

We apply the proposed MCUA scheme (in Fig. 3) to
PSM-Net [2] for matching cost computation. The branch
(a) of MCUA can be regarded as the backbone. It is a
2D-CNN which is the same as the matching cost compu-
tation network in PSM-Net. We divide the backbone into
nine stages based on the layer definitions in [2]: The first
seven stages, F0, . . . , F6, correspond to conv0 1, conv0 2,
conv0 3, conv1 x, conv2 x, conv3 x, and conv4 x, respec-
tively; The eighth stage, F7, contains the SPP module fol-
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Figure 3. Illustration of MCUA scheme. Branch (a) is the backbone, while branch (b) is the independent child module. Each colored
block represents the feature map generated by one stage, while each green block denotes the receptive field that the next stage has. The
intra-level combination is described by dashed gray lines, while the inter-level combination is depicted by solid color lines. The unary
features generated by F8 is the final output of this architecture. Tab. 1 shows the layer-wise definition of MCUA.

lowed by a 3 × 3 convolution operation; The ninth stage,
F8, is a 1× 1 convolution operation which aims to fuse the
combined features. We use the output of the last layer of
each stage as the feature information for other operations.
This design is natural since the deepest layer of each stage
should have the most reliable features. According to the
sizes of feature maps, the backbone can be divided into two
groups: Stages F0, . . . , F3 belong to the first group, whose
output feature maps have a size of 1

2× scale, and stages
F4, . . . , F8 belong to the second group whose output fea-
ture maps have a size of 1

4× scale.
Fig. 3 and Tab. 1 illustrates the details of MCUA. MCUA

allows each stage to receive the features from all previous
stages and enables its outputs to pass through all subsequent
stages. In details, features (i.e., h1, h2, . . .) from the pre-
vious stages are first aggregated by element-wise summa-
tion, and then pre-activated before passing through the next
stage. We formulate MCUA as follows:

hk1 = rk[

k−1∑
t=0

qkt (h
t
1)](0 ≤ k ≤ m), (3)

hk2 = rk[

m−1∑
t=0

qkt (αh
t
1) + qm+1

m (hm1 )](k = m+ 1), (4)

hk2 = rk[

m−1∑
t=0

qkt (αh
t
1) + qm+1

m (hm1 ) +

k−1∑
t=m+1

qkt (h
t
2)]

(m+ 2 ≤ k ≤ n),
(5)

where m = 4, n = 8, “hk1” denotes the output of stage Fk

with the feature maps scale of 1
2× input size, and “hk2” de-

notes the output of stage Fk with the scale of 1
4× input size.

Among all n + 1 stages, Fm is a special stage which re-
ceives the feature maps with 1

2× input size and outputs the

feature maps with 1
4× input size. α (α > 1) is the expand-

ing factor to control the ratio of the increased area, so that
one bigger receptive field captures more information than a
smaller one.

4.1.1 Intra-level Combination

The intra-level combination fuses feature maps in each
group, in which dense connection, described by dashed
lines in Fig. 3, are applied between each of the two stages.
In details, features are transformed by a linear function,
qkt (x) = βx where β is defined as a linear coefficient. This
transformation is achieved by a 1 × 1 convolution opera-
tion [13] to make the feature maps match with each other
in dimensions. The transformed features from previous
stages are integrated by element-wise summation and pre-
activated, and then, flow to the next stage. For instance, the
number of channels of the feature map generated by stage
F4 is 64, while that generated by stage F5,6,7 is 128. Before
merging and flowing to stage F8, the feature map of stage
F4 needs to be linearly transformed into an immediate map
with 128 channels.

4.1.2 Inter-level Combination

As shown in Fig. 3, we use an independent child module
to introduce inter-level aggregation which is represented by
the solid color lines. The independent child module first
adopts an average pooling operation, P0, to reduce the size
of input by half, and then uses four stages (i.e., F0, . . . , F3)
to learn unary features. Each of these four stages shares the
same internal architecture with the first group of backbone,
and parameters of corresponding layers are tied. Generally,
large receptive fields are usually achieved at deep stages of
a network. By using the independent child module, it can
obtain large receptive fields at shallow stages, which can
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Figure 4. A fix-sized receptive field (blue block) in CNNs enables
to filter larger region when decreasing the scales of input (scale of
b is half of the scale of a). H and W denote the height and width
of the area in feature maps, and H1 and W1 denote the height and
width of the receptive field, respectively.

be explained by Fig. 4: the receptive field with a size of
H1 ×W1 enables to capture more visual information from
the downsampled inputs (i.e., Fig. 4 (b)) than that on raw in-
puts (i.e., Fig. 4 (a)). Since the child module shares parame-
ters with backbone, we have ht2 = αht1 in Eq. (5), in which
α (α > 1) indicates the spatial information increased by ap-
plying a fixed-size receptive field on a different area of fea-
ture maps. Besides, linear transformations are also applied
in dense path. We set the parameter β, which adopts the
same strategy as features intra-level combination, to make
features adapt to the dimensions of subsequent stages. For
stereo matching, the independent child module can provide
more context information for the features to calculate cost
volume, which usually occurs at shallow stages. In Sec. 6.2,
we will show the importance of the independent child mod-
ule for learning contextual information and improving the
performance of stereo matching.

4.2. Disparity Regression

The soft argmin is a valid operation to regress values over
probability volumes regularized by 3-D CNNs [9], because
it is fully differentiable and enables back-propagation train-
ing. The regressed value for each pixel is calculated by a
weighted average of all modes, which can be shown as

Dh,w =

Dmax∑
d=0

d× σ(−cd,h,w) (6)

where cd,h,w, σd,h,w and d correspond to the cost value,
softmax operation for each pixel, and the disparity value,
respectively.

4.3. Outputs

As shown in Fig. 2, MCUA contains three hourglass net-
works, each of which generates a disparity map. These three
outputs are used to calculate loss when training the network,
and the last output is used for testing. The output of the
third hourglass network is considered as an initial dispar-
ity map. To refine the foreground of initial prediction, a

Table 1. Architecture of MCUA
Stage Type K S P D N R Output Dim. I/O Input

IN input 3 –/1 IN
Backbone

F0 Conv. 3 1 1 1 1 3 C01 3/32 1/2 input
F1 Conv. 3 1 1 1 1 5 C02 32/32 2/2 C01
F2 Conv. 3 1 1 1 1 7 C03 32/32 2/2 C01 + C02

F3 Conv. 3 1 1 1 3 13 C1x 32/32 2/2
C01 + C02 +

C03
Independent Child Module (i.e., Branch(b))

P0 AvgP 2 2 0 0 1 2 P20 3/3 1/2 IN
F0 Conv. 3 1 1 1 1 6 C201 3/32 2/4 P20
F1 Conv. 3 1 1 1 1 11 C202 32/32 4/4 C201
F2 Conv. 3 1 1 1 1 16 C203 32/32 4/4 C201 + C202

F3 Conv. 3 1 1 1 3 31 C21x 32/32 4/4
C201 + C202 +

C203
Backbone

F4 Conv. 3 1 1 1 16 45 C2x 32/64 2/4
C01 + C02 +
C03 + C1x

F5 Conv. 3 1 1 1 3 51 C3x 64/128 4/4
C201 + C202 +
C203 + C21x +

C2x

F6 Conv. 3 1 1 1 3 57 C4x 128/128 4/4
C201 + C202 +
C203 + C21x +

C2x + C3x

–

AvgP

Conv.
Ups.


64

32

16

8


1
–


64

32

16

8


1
–

0

1
–

1

1
–

1

1
–

–

–
–

B1
B2
B3
B4

128/32 4/4

C201 + C202 +
C203 + C21x +
C2x + C3x +

C4x

– ConC – – – – – – M1 128/128 4/4
B1, B2, B3, B4,

C2x, C4x
F7 Conv. 3 1 1 1 1 59 FSPP 320/128 4/4 M1

F8 Conv. 1 1 0 1 1 59 fusion 128/32 4/4

C201 + C202 +
C203 + C21x +
C2x + C3x +
C4x + FSPP

K, S, P, D, N, R: kernel size, stride, padding, dilation, number, and recep-
tive field of convolutional layer; Dim.: dimension of input/output feature
maps; I/O: scale of input/output feature maps; Symbol “+/-”: element-
wise summation/subtraction operation; ConC: concatenation operation.

residual module is added at the end of the network. It first
generates a residual map and then combine with the initial
disparity map using element-wise summation to obtain the
final output, i.e., Output3. As shown in Fig. 2, the residual
module contains three convolution layers with a kernel size
of 5 and stride of 2. The layer definitions of the residual
module is shown in supplementary materials. The whole
network is named EMCUA, which is slightly different from
MCUA in the last output.

4.4. Loss Function

We train the whole network end-to-end with supervised
learning by adopting Smooth L1 Loss which creates a cri-
terion that uses a squared term if the absolute element-wise
error falls below 1 and an L1 term otherwise. This loss is



Table 2. KITTI2015 Results

Mod. All (%) Noc (%)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

SegStereo 1.88 4.07 2.25 1.76 3.70 2.08
iResNet 2.25 3.40 2.44 2.07 2.76 2.19
CRL 2.48 3.59 2.67 2.32 3.12 2.45
GC-Net [9] 2.21 6.16 2.87 2.02 5.58 2.61

PSM-Net 1.86 4.62 2.32 1.71 4.31 2.14
MCUA 1.69 4.38 2.14 1.55 3.90 1.93
EMCUA 1.66 4.27 2.09 1.50 3.88 1.90

“All” and “Noc” : percentage of outliers averaged over ground
truth pixels of all/non-occluded regions. “D1-bg”, “D1-fg”, and
“D1-all”: percentage of outliers averaged only over background
regions, foreground regions, and all ground truth pixels.

less sensitive to outliers than L1 Loss and in some cases
prevents exploding gradients. The loss is defined as:

Loss(x, y) =
1

n

∑
i

zi (7)

zi =

{
0.5(xi − yi)2, if |xi − yi| < 1

|xi − yi| − 0.5, othervise
(8)

where xi and yi denote the ground truth and predicted dis-
parities for each pixel i, respectively. The loss weights for
the three intermediate supervision are 0.5, 0.7 and 1.0, re-
spectively, which are the same with PSM-Net [2].

5. Experiments
We test our proposed model on three datasets and com-

pare it with the state-of-the-art architectures.

5.1. Implementation Details

We implement our proposed model using PyTorch and
conduct experiments on four NVIDIA TITAN Xp GPUs.

Datasets We adopted three publicly available datasets for
training and testing: The Scene Flow datasets [15] con-
tain stereo images in 960× 540 pixel resolution with 35454
for training and 4370 for testing, and all image pairs are
rendered from various synthetic sequences, i.e., FlyingTh-
ings3D, Driving, and Monkaa. KITTI2015/2012 datasets
consist of KITTI2015 dataset [16] (200 training and 200
test scenes in 1242× 375 pixel resolution) and KITTI2012
dataset [5] (194 training and 195 test scenes in 1242× 375
pixel resolution). These images were captured by driving
in rural areas and on highways. For both KITTI training
sets, we use 160 image pairs for training and the remains
for validation.

Training The training process of EMCUA contains two
steps. The first step is to train the updated model that
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Figure 5. Results of our model and PSM-Net in KITTI2015 dataset

MCUA scheme is applied on the architecture of match-
ing cost computation in PSM-Net. Before inputting to the
network, each raw image is first processed by color nor-
malization and then randomly cropped into patches with
256 × 512 resolution. The network is optimized end-to-
end using Adam (Adaptive Moment Estimation) with β1 of
0.9 and β2 of 0.999. The batch size and maximum dis-
parity (D) set to 8 and 192 pixels, respectively. We first
train MCUA on Scene Flow datasets with a fixed learning
rate of 0.001 for 20 epochs, then we fine-tune the network
on KITTI2015/2012 dataset with stepped learning rates of
0.001 for 600 epochs and 0.0001 for another 400 epochs.
Furthermore, for Scene Flow dataset, we extend the train-
ing to 70 epochs to get the final results. The second step
refers to training the EMCUA in which a residual module
is added at the end of MCUA. We first train EMCUA on
Scene Flow datasets by 1 epoch using the trained param-
eters from MCUA on KITTI2015/2012 datasets, then con-
tinue to fine-tune EMCUA on KITTI2015/2012 datasets, re-
spectively. The parameter settings in EMCUA training are
as same as that in MCUA training.

Validating/Testing As shown in Fig. 2, Output3, the
last of three outputs, is selected as the final result of
the whole network, and we estimate the performance of
both MCUA and EMCUA on both Scene Flow test and
KITTI2015/2012 validating sets. To implement estimation,
based on groundtruth we calculate the end-point-error of
the results of each epoch for Scene Flow test set, while
three-pixel-error of that for KITTI2015/2012 validating
sets, respectively. After finishing the estimation, we use
the trained parameters with the lowest error to predict the



Table 3. KITTI2012 Results

Mod
> 2px > 3px > 4px > 5px ME(px)

Noc All Noc All Noc All Noc All AN AA

SegStereo 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.5 0.6
iResNet 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.5 0.6
GC-Net 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 0.7

PSM-net 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 0.6
MCUA 2.07 2.64 1.30 1.70 0.98 1.29 0.80 1.04 0.5 0.5
EMCUA 2.02 2.56 1.26 1.64 0.95 1.24 0.76 0.99 0.4 0.5

“Noc” and “All”: percentage of erroneous pixels in non-occluded
areas, and in total. “AN” and “AA”: average disparity/end-point
error in non-occluded areas, and in total. “ME”: mean error.

(a) Ours (b) PSM-Net
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Figure 6. Results of our model and PSM-Net in KITTI2012 dataset

Table 4. Performance comparison on Scene Flow test set

Mod. EPE Mod. EPE Mod. EPE

MCUA 0.56 PSM-Net [2] 1.09 StereoNet [10] 1.10
CRL. [18] 1.32 iResNet [11] 1.40 SegStereo [24] 1.45

Mod.: model; EPE: end-point-error;

disparity maps for KITTI2015/2012 test sets and submit the
results to the KITTI evaluation server for competition. The
batch size is set to 4 when validating and testing the perfor-
mance of both MCUA and EMCUA.

5.2. Performance on KITTI2015/2012 Datasets

Compared with Scene Flow datasets [15] which only
consist of synthetic scenes, KITTI2015/2012 datasets [16,
5] contain real-world image data collected from scenes
such as urban, rural, and highways, which has higher
credit for the algorithm evaluation. As a result, we choose
KITTI2015/2012 datasets to evaluate the contribution of ap-
plying MCUA scheme and the additional residual module to
the improvement of performance.

We compare both EMCUA and MCUA with PSM-
Net and other recently published approaches on KITTI
2015/2012 test sets. The evaluated results (reported by
KITTI server) are illustrated in Tab. 2 and Tab. 3, re-
spectively. EMCUA has the overall three-pixel-error of
2.09%/1.64% on KITTI2015/2012 dataset, and achieves
9.9%/13.2% decrease compared to PSM-Net, while MCUA
has that of 2.14%/1.70%, and achieves 7.8%/10.1% de-
crease compared to PSM-Net. The results show that
both EMCUA and MCUA outperform the state-of-the-art
method (i.e., SegStereo), and the performance gain mainly
comes from MCUA scheme. Furthermore, as shown in
Tab. 2, EMCUA has the overall three-pixel-error of fore-
ground/background of 4.27%/1.66% on KITTI2015 dataset,
which achieves 2.5%/1.8% decrease compared to MCUA.
It shows that the residual module is mainly used to improve
the performance of the accuracy of the foreground. Further-
more, Fig. 5 and Fig. 6 illustrate some examples of final
results generated by EMCUA on KITTI2015/2012 datasets,
respectively.

5.3. Performance on Scene Flow Datasets

As we know, EMCUA is the updated model that is
adding a residual module at the end of MCUA, which aims
to enhance the performance of MCUA. To show the effect
of applying MCUA scheme, we only compare MCUA with
PSM-Net and other four existing approaches on Scene Flow
test set. As shown in Tab. 4, the end-point-error of MCUA is
0.56 pixels, which has a 50% increase over PSM-Net, and
outperforms the state-of-the-art approach. Two of testing
examples are illustrated in Fig. 7, as shown in blue boxes,
applying ultra-aggregation scheme helps the model to learn
robust context information and accurately predicts disparity
especially for overlapped objects.

6. Model Design Analysis

In this section, we qualitatively evaluate MCUA scheme.
We first train models on the Scene Flow training datasets
with 20 epochs, and then fine-tune on the KITTI2015 train-
ing set with 1000 epochs. We evaluate the resulting models
on the Scene Flow validation set and KITTI2015 validation
set.

6.1. Aggregation Schemes

The first experiment in Tab. 5 compares MCUA with
DenseNets [8] and DLA [25] for stereo matching by re-
placing the 2-D CNNs branch of PSM-Net with three ag-
gregation schemes. From Tab. 5, we can see that MCUA
performs significantly better than DenseNets and DLA. We
also observe that MCUA enables to learn contextual infor-
mation effectively and improve the sharpness and accuracy
for the disparity map (Fig. 7). Moreover, MCUA outper-
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Figure 7. MCUA produces the state-of-the-art performance on Scene Flow Datasets. The left column shows the left image of the stereo
images. The second shows the ground truth disparity. The third shows the prediction of our method. The fourth shows the disparity
produced by PSM-Net [2].

Table 5. Ablation study

Mod. Scene Flow KITTI2015 Para.
> 1px > 3px > 5px EPE VE (%)

Compare of aggregation patterns

PSM-Net – – – 1.119 1.83 5.22M
DenseNets 8.526 3.329 2.286 0.794 1.698 5.27M
DLA 8.586 3.337 2.280 0.806 1.685 5.32M
MCUA 7.885 3.108 2.148 0.758 1.579 5.31M

Compare of architecture components

UChi 8.185 3.153 2.147 0.755 1.635 5.39M
Chi 8.133 3.242 2.226 0.777 1.642 5.29M
DenPool 8.187 3.187 2.179 0.761 1.628 5.31M
MCUA 7.885 3.108 2.148 0.758 1.579 5.31M

> tpx: EPE; VE: three-pixel-error; Para.: number of parameters.

forms the plain model by aggregating much richer contexts
without significantly increasing computation burden.

6.2. Effect of MCUA

Tab. 5 shows the results of several control experiments,
which are used to evaluate each part of MCUA scheme. In
the first ablation study, we untie the relationship between
child module and branch (a) in MCUA, which means that
the branch (a) do not share parameters with child module.
This new model is denoted as UChi. As shown in Tab. 5,
although the number of parameters for Uchi increases by
0.08M after untying, the performance has no significant im-
provement compared with the original MCUA.

The second ablation model, Chi, only applies the intra-
level combination on the network for the matching cost
calculation in PSM-Net by removing the dashed lines but
remaining the color lines in Fig. 3. As shown in Tab. 5,
the performance of Chi decreases compared with the origi-
nal MCUA, which indicates that the inter-level combination
through child module makes an important contribution to
the whole model.

The third ablation model densely connect all stages in
the backbone itself. We use pooling operation to match fea-
tures with different scales. The resulting architecture is rep-
resented as DenPool. It is clear from Tab. 5 that, using an
independent child module (i.e., MCUA) is better than with-
out using it (i.e., DenPool). Hence intra-level feature ag-
gregation is insufficient to capture enough contextual infor-
mation. However, our independent child module introduces
inter-level feature aggregation, enlarges the receptive fields,
captures more context information, improves the cost vol-
ume, and thus achieves better stereo matching results.

7. Conclusion
In this paper, we propose a general feature aggregation

scheme, MCUA, which contains both intra- and inter-level
feature aggregation, while DenseNets and DLA contain
only intra-level aggregation. We formulates these models
as Higher Order RNNs to clearly show this difference. We
use an independent child module to introduce inter-level ag-
gregation, which enlarges the receptive fields and captures
more context information. The experimental results demon-
strate the effectiveness of MCUA scheme for the context
learning. Our approach outperforms the state-of-the-art
methods on the Scene Flow datasets and KITTI2015/2012
benchmarks. In the future, we plan to make exploration on
the improvement of soft argmin operation which is another
limitation in stereo matching.
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