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Abstract

In this paper, we propose an accurate edge detector us-
ing richer convolutional features (RCF). Since objects in
natural images possess various scales and aspect ratios,
learning the rich hierarchical representations is very crit-
ical for edge detection. CNNs have been proved to be effec-
tive for this task. In addition, the convolutional features in
CNNs gradually become coarser with the increase of the re-
ceptive fields. According to these observations, we attempt
to adopt richer convolutional features in such a challeng-
ing vision task. The proposed network fully exploits multi-
scale and multilevel information of objects to perform the
image-to-image prediction by combining all the meaningful
convolutional features in a holistic manner. Using VGG16
network, we achieve state-of-the-art performance on sev-
eral available datasets. When evaluating on the well-known
BSDS500 benchmark, we achieve ODS F-measure of 0.811
while retaining a fast speed (8 FPS). Besides, our fast ver-
sion of RCF achieves ODS F-measure of 0.806 with 30 FPS.

1. Introduction

Edge detection, which aims to extract visually salient
edges and object boundaries from natural images, has re-
mained as one of the main challenges in computer vision for
several decades. It is usually considered as a low-level tech-
nique, and varieties of high-level tasks have greatly bene-
fited from the development of edge detection, such as object
detection [17, 55], object proposal [9, 54, 60–62] and image
segmentation [1, 3, 8, 56].

Typically, traditional methods first extract local cues of
brightness, colors, gradients and textures, or other manu-
ally designed features like Pb [40], gPb [2], and Sketch to-
kens [36], then sophisticated learning paradigms [14,57] are
used to classify edge and non-edge pixels. Although edge
detection approaches using low-level features have made
great improvement in these years [33], their limitations are
also obvious. For example, edges and boundaries are often
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Figure 1: We build a simple network based on VGG16
[50] to produce side outputs of conv3 1, conv3 2, conv3 3,
conv4 1, conv4 2 and conv4 3. One can clearly see that
convolutional features become coarser gradually, and the
intermediate layers conv3 1, conv3 2, conv4 1, and conv4 2
contain lots of useful fine details that do not appear in other
layers.

defined to be semantically meaningful, however, it is dif-
ficult to use low-level cues to represent object-level infor-
mation. Under these circumstances, gPb [2] and Structured
Edges [14] try to use complex strategies to capture global
features as much as possible.

In the past few years, convolutional neural networks
(CNNs) have become popular in the computer vision com-
munity by substantially advancing the state-of-the-art of
various tasks, including image classification [31, 50, 52],
object detection [20, 21, 34, 43] and semantic segmenta-
tion [7, 38] etc. Since CNNs have a strong capability to
learn high-level representations of natural images automati-
cally, there is a recent trend of using convolutional networks
to perform edge detection. Some well-known CNN-based
methods have pushed forward this field significantly, such
as DeepEdge [4], N4-Fields [19], CSCNN [26], DeepCon-
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tour [47], and HED [58]. Our algorithm falls into this cate-
gory as well.

To see the information obtained by different convolution
(i.e. conv) layers in edge detection, we build a simple net-
work to produce side outputs of intermediate layers using
VGG16 [50] which has five conv stages. Fig. 1 shows an
example. We discover that convolutional features become
coarser gradually and intermediate layers contain lots of
useful fine details. On the other hand, since richer convo-
lutional features are highly effective for many vision tasks,
many researchers make efforts to develop deeper networks
[25]. However, it is difficult to get the networks to converge
when going deeper because of vanishing/exploding gradi-
ents and training data shortage (e.g. for edge detection). So
why don’t we make full use the CNN features we have now?
Our motivation is based on these observations. Unlike pre-
vious CNN methods, the proposed novel network uses the
CNN features of all the conv layers to perform the pixel-
wise prediction in an image-to-image fashion, and thus is
able to obtain accurate representations for objects or object
parts in different scales. Concretely speaking, we attempt
to utilize the CNN features from all the conv layers in a uni-
fied framework that can be potentially generalized to other
vision tasks. By carefully designing a universal strategy to
combine hierarchical CNN features, our system performs
very well in edge detection.

When evaluating the proposed method on BSDS500
dataset [2], we achieve the best trade-off between effective-
ness and efficiency with the ODS F-measure of 0.811 and
the speed of 8 FPS. It even outperforms the result of hu-
man perception (ODS F-measure 0.803). In addition, the
fast version of RCF is also presented, which achieves ODS
F-measure of 0.806 with 30 FPS.

2. Related Work
Since edge detection was set as one of the most funda-

mental problems in computer vision [15,18,46], researchers
have struggled on it for nearly 50 years, and there have
emerged a large number of materials. Broadly speaking, we
can roughly categorize these approaches into three groups:
early pioneering ones, learning based ones using hand-
crafted features and deep learning based ones. Here we
briefly review some representative approaches that were de-
veloped in the past few decades.

Early pioneering methods mainly focused on the utiliza-
tion of intensity and color gradients. Robinson [46] dis-
cussed a quantitative measure in choosing color coordinates
for the extraction of visually significant edges and bound-
aries. [39, 53] presented zero-crossing theory based algo-
rithms. Sobel [51] proposed the famous Sobel operator to
compute the gradient map of an image, and then yielded
edges by thresholding the gradient map. An extended ver-
sion of Sobel, named Canny [6], added Gaussian smooth-

ing as a preprocessing step and used the bi-threshold to get
edges. In this way, Canny is more robust to noise. In fact, it
is still very popular across various tasks now because of its
notable efficiency. However, these early methods seem to
have poor accuracy and thus are difficult to adapt to today’s
applications.

Later, researchers tended to manually design features us-
ing low-level cues such as intensity, gradient, and texture,
and then employ sophisticated learning paradigm to clas-
sify edge and non-edge pixels [13, 44]. Konishi et al. [30]
proposed the first data-driven methods by learning the prob-
ability distributions of responses that correspond to two sets
of edge filters. Martin et al. [40] formulated changes in
brightness, color, and texture as Pb features, and trained a
classifier to combine the information from these features.
Arbeláez et al. [2] developed Pb into gPb by using stan-
dard Normalized Cuts [48] to combine above local cues
into a globalization framework. Lim [36] proposed novel
features, Sketch tokens that can be used to represent the
mid-level information. Dollár et al. [14] employed random
decision forests to represent the structure presented in lo-
cal image patches. Inputting color and gradient features,
the structured forests output high-quality edges. However,
all the above methods are developed based on handcrafted
features, which has limited ability to represent high level
information for semantically meaningful edge detection.

With the vigorous development of deep learning re-
cently, a series of deep learning based approaches have
been invented. Ganin et al. [19] proposed N4-Fields that
combines CNNs with the nearest neighbor search. Shen
et al. [47] partitioned contour data into subclasses and fit
each subclass by learning model parameters. Hwang et
al. [26] considered contour detection as a per-pixel clas-
sification problem. They employed DenseNet [27] to ex-
tract a feature vector for each pixel, and then SVM classier
was used to classify each pixel into the edge or non-edge
class. Xie et al. [58] recently developed an efficient and ac-
curate edge detector, HED, which performs image-to-image
training and prediction. This holistically-nested architec-
ture connects their side output layers, which is composed
of one conv layer with kernel size 1, one deconv layer and
one softmax layer, to the last conv layer of each stage in
VGG16 [50]. More recently, Liu et al. [37] used relaxed
label generated by bottom-up edges to guide the training
process of HED, and achieved some improvement. Li et
al. [35] proposed a complex model for unsupervised learn-
ing of edge detection, but the performance is worse than
training on the limited BSDS500 dataset.

The aforementioned CNN-based models have advanced
the state-of-the-art significantly, but all of them lost some
useful hierarchical CNN features when classifying pixels to
edge or non-edge class. These methods usually only adopt
CNN features from the last layer of each conv stage. To



fix this case, we propose a fully convolutional network to
combine features from each CNN layer efficiently. We will
detail our method below.

3. Richer Convolutional Features (RCF)
3.1. Network Architecture

Inspired by previous literature in deep learning [20, 38,
43, 58], we design our network by modifying VGG16 net-
work [50]. VGG16 network that composes of 13 conv layers
and 3 fully connected layers has achieved state-of-the-art in
a variety of tasks, such as image classification [50] , object
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Figure 2: Our RCF network architecture. The input is an
image with arbitrary sizes, and our network outputs an edge
possibility map in the same size.

detection [20,21,43] and etc. Its conv layers are divided into
five stages, in which a pooling layer is connected after each
stage. The useful information captured by each conv layer
becomes coarser with its receptive field size increasing. De-
tailed receptive field sizes of different layers can be seen in
Tab. 1. The use of this rich hierarchical information is hy-
pothesized to help a lot. The starting point of our network
design lies here.

Table 1: Detailed receptive field and stride sizes of standard
VGG16 net [50].

layer conv1 1 conv1 2 pool1 conv2 1 conv2 2 pool2
rf size 3 5 6 10 14 16
stride 1 1 2 2 2 4
layer conv3 1 conv3 2 conv3 3 pool3 conv4 1 conv4 2
rf size 24 32 40 44 60 76
stride 4 4 4 8 8 8
layer conv4 3 pool4 conv5 1 conv5 2 conv5 3 pool5
rf size 92 100 132 164 196 212
stride 8 16 16 16 16 32

The novel network proposed by us is shown in Fig. 2.
Compared with VGG16, our modifications can be described
as following:

• We cut all the fully connected layers and the pool5
layer. On the one side, we remove the fully connected
layers due to the fact that they do not align with our
design of fully convolutional network. On the other
hand, adding pool5 layer will increase the stride by two
times, and it’s harmful for edge localization.

• Each conv layer in VGG16 is connected to a conv layer
with kernel size 1 × 1 and channel depth 21. And the
resulting layers in each stage are accumulated using an
eltwise layer to attain hybrid features.

• An 1 × 1 − 1 conv layer follows each eltwise layer.
Then, a deconv layer is used to up-sample this feature
map.

• A cross-entropy loss / sigmoid layer is connected to the
up-sampling layer in each stage.

• All the up-sampling layers are concatenated. Then an
1×1 conv layer is used to fuse feature maps from each
stage. At last, a cross-entropy loss / sigmoid layer is
followed to get the fusion loss / output.

Hence, we combine hierarchical features from all the conv
layers into a holistic framework, in which all of the parame-
ters are learned automatically. Since receptive field sizes of
conv layers in VGG16 are different from each other, our net-
work can learn multiscale, including low-level and object-
level, information that is helpful to edge detection. We show



Figure 3: Several examples of the outputs in each stage of
RCF. The top line is the original images from BSDS500 [2].
From second to sixth line is the output of stage 1, 2, 3, 4 and
5 respectively.

the intermediate results from each stage in Fig. 3. From top
to bottom, the edge response becomes coarser while obtain-
ing strong response at the larger object or object part bound-
aries. It is consistent with our expectation, in which conv
layers will learn to detect the larger objects with the recep-
tive field size increasing. Since our RCF model combines
all the accessible conv layers to employ richer features, it is
expected to achieve a boost in accuracy.

3.2. Annotator-robust Loss Function

Edge datasets in this community are usually labeled by
several annotators using their knowledge about the pres-
ences of objects and object parts. Though humans vary in
cognition, these human-labeled edges for the same image
share high consistency. For each image, we average all the
ground truth to generate an edge probability map, which
ranges from 0 to 1. Here, 0 means no annotator labeled at
this pixel, and 1 means all annotators have labeled at this
pixel. We consider the pixels with edge probability higher
than η as positive samples and the pixels with edge proba-
bility equal to 0 as negative samples. Otherwise, if a pixel
is marked by fewer than η of the annotators, this pixel may
be semantically controversial to be an edge point. Thus,
whether regarding it as positive or negative samples may
confuse networks. So we ignore pixels in this category.

We compute the loss at every pixel with respect to pixel

label as

l(Xi;W ) =


α · log (1− P (Xi;W )) if yi = 0

0 if 0 < yi ≤ η
β · log P (Xi;W ) otherwise,

(1)
in which

α = λ · |Y +|
|Y +|+ |Y −|

β =
|Y −|

|Y +|+ |Y −|
.

(2)

Y + and Y − denote positive sample set and negative sam-
ple set respectively. The hyper-parameter λ is to balance
positive and negative samples. The activation value (CNN
feature vector) and ground truth edge probability at pixel i
are presented by Xi and yi, respectively. P (X) is the stan-
dard sigmoid function, and W denotes all the parameters
that will be learned in our architecture. Therefore, our im-
proved loss function can be formulated as

L(W ) =

|I|∑
i=1

( K∑
k=1

l(X
(k)
i ;W ) + l(Xfuse

i ;W )
)
, (3)

where X
(k)
i is the activation value from stage k while

Xfuse
i is from fusion layer. |I| is the number of pixels in

image I , and K is the number of stages (equals to 5 here).

3.3. Multiscale Hierarchical Edge Detection

In single scale edge detection, we input an original im-
age into our fine-tuned RCF network, then, the output is
an edge probability map. To further improve the quality of
edges, we use image pyramids during testing. Specifically,
we resize an image to construct an image pyramid, and each
of these images is input to our single-scale detector sepa-
rately. Then, all resulting edge probability maps are resized
to original image size using bilinear interpolation. At last,
these maps are averaged to get a final prediction map. Fig. 4
shows a visualized pipeline of our multiscale algorithm. We
also try to use weighted sum, but we find the simple average
works very well. Considering the trade-off between accu-
racy and speed, we use three scales 0.5, 1.0, and 1.5 in this
paper. When evaluating on BSDS500 [2] dataset, this sim-
ple multiscale strategy improves the ODS F-measure from
0.806 to 0.811, though the speed drops from 30 FPS to 8
FPS. See Sec. 4 for details.

3.4. Comparison With HED

The most obvious difference between our RCF and HED
[58] is in three parts. First, HED only considers the last conv
layer in each stage of VGG16, in which lots of helpful in-
formation to edge detection is missed. In contrast to it, RCF
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Figure 4: The pipeline of our multiscale algorithm. The original image is resized to construct an image pyramid. And these
multiscale images are input to RCF network for a forward pass. Then, we use bilinear interpolation to restore resulting edge
respondence maps to original sizes. A simple average of these edge maps will output high-quality edges.

uses richer features from all the conv layers, thus it can cap-
ture more object or object part boundaries accurately across
a larger range of scales. Second, a novel loss function is pro-
posed to treat training examples properly. We only consider
the edge pixels that most annotators labeled as positive sam-
ples, since these edges are highly consistent and thus easy
to train. Besides, we ignore edge pixels that are marked
by a few annotators because of their confusing attributes.
Thirdly, we use multiscale hierarchy to enhance edges. Our
evaluation results demonstrate the strengths (2.3% improve-
ment in ODS F-measure over HED) of these choices. See
Sec. 4 for details.

4. Experiments

We implement our network using the publicly available
Caffe [28] which is well-known in this community. The
VGG16 model that is pre-trained on ImageNet [11] is used
to initialize our network. We change the stride of pool4
layer to 1 and use the atrous algorithm to fill the holes. In
RCF training, the weights of 1 × 1 conv layer in stage 1-5
are initialized from zero-mean Gaussian distributions with
standard deviation 0.01 and the biases are initialized to 0.
The weights of 1×1 conv layer in fusion stage are initialized
to 0.2 and the biases are initialized to 0. Stochastic gradient
descent (SGD) minibatch samples 10 images randomly in
each iteration. For other SGD hyper-parameters, the global
learning rate is set to 1e-6 and will be divided by 10 after
every 10k iterations. The momentum and weight decay are
set to 0.9 and 0.0002 respectively. We run SGD for 40k
iterations totally. The parameters η and λ in loss function
are also set depending on training data. All experiments in
this paper are finished using a NVIDIA TITAN X GPU.

Given an edge probability map, a threshold is needed to
produce the edge image. There are two choices to set this
threshold. The first one is referred as optimal dataset scale
(ODS) which employs a fixed threshold for all images in the
dataset. And the second is called optimal image scale (OIS)
which selects an optimal threshold for each image. We use
F-measure ( 2·Precision·Recall

Precision+Recall ) of both ODS and OIS in our
experiments.

4.1. BSDS500 Dataset

BSDS500 [2] is a widely used dataset in edge detec-
tion. It is composed of 200 training, 100 validation and
200 test images, and each image is labeled by 4 to 9 anno-
tators. We utilize the training and validation sets for fine-
tuning, and test set for evaluation. Data augmentation is the
same as [58]. Inspired by the previous work [29,37,59], we
mix augmentation data of BSDS500 with flipped PASCAL
VOC Context dataset [42] as training data. When train-
ing, we set loss parameters η and λ to 0.5 and 1.1, respec-
tively. When evaluating, standard non-maximum suppres-
sion (NMS) [14] is applied to thin detected edges. We com-
pare our method with some non-deep-learning algorithms,
including Canny [6], EGB [16], gPb-UCM [2], ISCRA [45],
MCG [3], MShift [10], NCut [48], SE [14], and OEF [24],
and some recent deep learning based approaches, includ-
ing DeepContour [47], DeepEdge [4], HED [58], HFL [5],
MIL+G-DSN+MS+NCuts [29] and etc.

Fig. 5 shows the evaluation results. The performance of
human eye in edge detection is known as 0.803 ODS F-
measure. Both single-scale and multiscale (MS) versions
of RCF achieve better results than humans. When compar-
ing with HED [58], ODS F-measures of our RCF-MS and
RCF are 2.3% and 1.8% higher than it, respectively. And
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Figure 5: The evaluation results on standard BSDS500 [2]
dataset. Both single-scale and multiscale versions of RCF
achieve better performance than humans.

the precision-recall curves of our methods are also higher
than HED’s. These significant improvements demonstrate
the effectiveness of our richer convolutional features. All
the conv layers contain helpful hierarchical information, not
only the last one in each convolution stage.

We show statistic comparison in Tab. 2. From RCF
to RCF-MS, the ODS F-measure increases from 0.806 to
0.811, though the speed drops from 30 FPS to 8 FPS. It
proves the validity of our multiscale strategy. We also ob-
serve an interesting phenomenon in which the RCF curves
are not as long as other methods when evaluated using the
default parameters in BSDS500 benchmark. It may sug-
gest that RCF tends only to remain very confident edges.
Our methods also achieve better results than recent edge
detectors, such as RDS [37] and CEDN [59]. RDS uses re-
laxed laebls and extra training data to retrain the HED net-
work, and it improves 0.4% of ODS F-measure compared
with HED. In contrast, the F-measure of our RCF method is
1.4% higher in ODS F-measure than RDS. It demonstrates
our improvement is not trivial or ad hoc.

We can see that RCF achieves the best tarde-off be-
tween effectiveness and efficiency. Although MIL+G-
DSN+MS+NCuts [29] achieves a little better accuracy than
our methods, our RCF and RCF-MS are much fastest than
it. The single-scale RCF achieves 30 FPS, and RCF-MS
can also achieve 8 FPS. Note that our RCF network only
adds some 1 × 1 conv layers to HED, so the time con-
sumption is almost same as HED. Besides, starting from

Table 2: The comparison with some competitors on
BSDS500 [2] dataset. † means GPU time. The top three
results are highlighted in red, green and blue.

Method ODS OIS FPS
Canny [6] .611 .676 28
EGB [16] .614 .658 10

MShift [10] .598 .645 1/5
gPb-UCM [2] .729 .755 1/240

Sketch Tokens [36] .727 .746 1
MCG [3] .744 .777 1/18
SE [14] .743 .763 2.5

OEF [24] .746 .770 2/3
DeepContour [47] .757 .776 1/30†

DeepEdge [4] .753 .772 1/1000†

HFL [5] .767 .788 5/6†

N4-Fields [19] .753 .769 1/6†

HED [58] .788 .808 30†
RDS [37] .792 .810 30†

CEDN [59] .788 .804 10†
MIL+G-DSN+MS+NCuts [29] .813 .831 1

RCF .806 .823 30†
RCF-MS .811 .830 8†

HED, Iasonas et al. [29] added some useful components
to it, such as Multiple Instance Learning (MIL) [12], G-
DSN [32], multiscale, extern training data with PASCAL
Context dataset [42] and Normalized Cuts [2]. Our pro-
posed methods are much simpler than [2]. Since our edge
detectors are simple and efficient, it is easy to apply them in
various high-level vision tasks.

4.2. NYUD Dataset

NYUD [49] dataset is composed of 1449 densely la-
beled pairs of aligned RGB and depth images. Recently
many works have conducted edge evaluation on it, such
as [14, 57]. Gupta et al. [22] split NYUD dataset into 381
training, 414 validation and 654 testing images. We follow
their settings and train our RCF network using training and
validation sets in full resolution as in HED [58].

We utilize depth information by using HHA [23], in
which depth information is encoded into three channels:
horizontal disparity, height above ground, and angle with
gravity. Thus HHA features can be represented as a color
image. Then, two models for RGB images and HHA fea-
ture images are trained separately. We rotate the images and
corresponding annotations to 4 different angles (0, 90, 180
and 270 degrees) and flip them at each angle. In the train-
ing process, λ is set to 1.2 for both RGB and HHA. Since
NYUD only has one ground truth for each image, η is use-
less here. Other network settings are the same as used for
BSDS500. At testing, the final edge predictions are defined
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Figure 6: The evaluation results on NYUD [49] dataset.
RCF is referred to single-scale version here.

by averaging the outputs of RGB model and HHA model.
When evaluating, we increase localization tolerance, which
controls the maximum allowed distance in matches between
predicted edges and ground truth, from 0.0075 to 0.011, be-
cause images in NYUD dataset are larger than images in
BSDS500 dataset.

Table 3: The comparison with some competitors on NYUD
dataset [49]. †means GPU time.

Method ODS OIS FPS
OEF [24] .651 .667 1/2

gPb-UCM [2] .631 .661 1/360
gPb+NG [22] .687 .716 1/375

SE [14] .695 .708 5
SE+NG+ [23] .706 .734 1/15

HED-HHA [58] .681 .695 20†
HED-RGB [58] .717 .732 20†

HED-RGB-HHA [58] .741 .757 10†

RCF-HHA .705 .715 20†
RCF-RGB .729 .742 20†

RCF-HHA-RGB .757 .771 10†

We only compare our single-scale version of RCF with
some famous competitors. OEF [24] and gPb-UCM [2]
only use RGB images, while other methods employ both
depth and RGB information. The precision-recall curves
are shown in Fig. 6. RCF achieves the best performance on
NYUD dataset, and the second place is HED [58]. Tab. 3

shows statistical comparison. We can see that RCF achieves
better results than HED not only on separate HHA or RGB
data, but also on the merged HHA-RGB data. For HHA and
RGB data, ODS F-measure of RCF is 2.4% and 1.2% higher
than HED, respectively. For merging HHA-RGB data, RCF
is 1.6% higher than HED. Furthermore, HHA edges per-
form worse than RGB, but averaging HHA and RGB edges
achieves much higher results. It suggests that combining
different types of information is very useful for edge de-
tection, and it may be the reason why OEF and gPb-UCM
perform worse than other methods.

4.3. Multicue Dataset

Recently, Multicue dataset is proposed by Mély et al.
[41] to study psychophysics theory for boundary detec-
tion. It is composed of short binocular video sequences of
100 challenging natural scenes captured by a stereo cam-
era. Each scene contains a left and a right view short (10-
frame) color sequences. The last frame of the left images
for each scene is labeled for two annotations, object bound-
aries and low-level edges. Unlike people who usually use
boundary and edge interchangeably, they strictly defined
boundary and edge according to visual perception at dif-
ferent stages. Thus, boundaries are referred to the boundary
pixels of meaningful objects, and edges are abrupt pixels at
which the luminance, color or stereo change sharply. In this
subsection, we use boundary and edge as defined by Mély
et al. [41] while considering boundary and edge having the
same meaning in previous sections.

As done in Mély et al. [41] and HED [58], we randomly
split these human-labeled images into 80 training and 20
test samples, and average the scores of three independent
trials as final results. When training on Multicue, λ is set to
1.1, and η is set to 0.4 for boundary task and 0.3 for edge
task. For boundary detection task, we use learning rate 1e-6
and run SGD for 2k iterations. For edge detection task, we
use learning rate 1e-7 and run SGD for 4k iterations. We
augment the training data as we do on NYUD dataset. Since
the image resolution of Multicue is very high, we randomly
crop 500× 500 patches from original images.

We show evaluation results in Tab. 4. Our proposed RCF
achieve substantially higher results than HED. For bound-
ary task, RCF-MS is 1.1% ODS F-measure higher and 1.4%
OIS F-measure higher than HED. For edge task, RCF-MS is
0.9% ODS F-measure higher than HED. Note that the fluc-
tuation of RCF is also smaller than HED, which suggests
RCF is more robust over different kinds of images. Some
qualitative results are shown in Fig. 7.

4.4. Network Discussion

To further explore the effectiveness of our network archi-
tecture, we implement some mixed networks using VGG16
[50] by connecting our richer feature side outputs to some



Figure 7: Some examples of RCF. From top to bottom: BSDS500 [2], NYUD [49], Multicue-Boundary [41], and Multicue-
Edge [41]. From left to right: origin image, ground truth, RCF edge map, origin image, ground truth, and RCF edge map.

Table 4: The comparison with some competitors on Multi-
cue dataset [41].

Method ODS OIS
Human-Boundary [41] .760 (.017) –

Multicue-Boundary [41] .720 (.014) –
HED-Boundary [58] .814 (.011) .822 (.008)

RCF-Boundary .817 (.004) .825 (.005)
RCF-MS-Boundary .825 (.008) .836 (.007)
Human-Edge [41] .750 (.024) –

Multicue-Edge [41] .830 (.002) –
HED-Edge [58] .851 (.014) .864 (.011)

RCF-Edge .857 (.004) .862 (.004)
RCF-MS-Edge .860 (.005) .864 (.004)

convolution stages while connecting side outputs of HED to
the other stages. With training only on BSDS500 [2] dataset
and testing on the single scale, evaluation results of these
mixed networks are shown in Tab. 5. The last two lines of
this table correspond to HED and RCF, respectively. We
can observe that all of these mixed networks perform better
than HED and worse than RCF that is fully connected to
RCF side outputs. It clearly demonstrates the importance of
our strategy of richer convolutional features.

In order to investigate whether including additional non-
linearity helps, we connecting ReLU layer after 1× 1− 21
or 1 × 1 − 1 conv layers in each stage. However, the net-
work performs worse. Especially, when we attempt to add
nonlinear layers to 1 × 1 − 1 conv layers, the network can
not converge properly.

Table 5: Results of some thought networks.

RCF Stage HED Stage ODS OIS
1, 2 3, 4, 5 .792 .810
2, 4 1, 3, 5 .795 .812
4, 5 1, 2, 3 .790 .810

1, 3, 5 2, 4 .794 .810
3, 4, 5 1, 2 .796 .812

– 1, 2, 3, 4, 5 .788 .808
1, 2, 3, 4, 5 – .798 .815

5. Conclusion
In this paper, we propose a novel CNN architecture,

RCF, that makes full use of semantic and fine detail fea-
tures to carry out edge detection. We carefully design it as
an extensible architecture. The resulting RCF method can
produce high-quality edges very efficiently, and this makes
it promising to be applied in other vision tasks. RCF ar-
chitecture can be seen as a development direction of fully
connected network, like FCN [38] and HED [58]. It would
be interesting to explore the usefulness of our network ar-
chitecture in other hot topics, such as salient object detec-
tion and semantic segmentation. Source code is available at
https://github.com/yun-liu/rcf.
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