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Abstract

Spatiotemporal information is essential for video salient ob-
ject detection (VSOD) due to the highly attractive object mo-
tion for human’s attention. Previous VSOD methods usu-
ally use Long Short-Term Memory (LSTM) or 3D ConvNet
(C3D), which can only encode motion information through
step-by-step propagation in the temporal domain. Recently,
the non-local mechanism is proposed to capture long-range
dependencies directly. However, it is not straightforward to
apply the non-local mechanism into VSOD, because i) it fails
to capture motion cues and tends to learn motion-independent
global contexts; ii) its computation and memory costs are pro-
hibitive for video dense prediction tasks such as VSOD. To
address the above problems, we design a Constrained Self-
Attention (CSA) operation to capture motion cues, based on
the prior that objects always move in a continuous trajec-
tory. We group a set of CSA operations in Pyramid structures
(PCSA) to capture objects at various scales and speeds. Ex-
tensive experimental results demonstrate that our method out-
performs previous state-of-the-art methods in both accuracy
and speed (110 FPS on a single Titan Xp) on five challenge
datasets. Our code is available https://github.com/guyuchao/
PyramidCSA.

Introduction
Video Salient Object Detection (VSOD) aims at locating the
most attractive object in video sequences. It usually serves as
a pre-processing step for many real-time applications, such
as video tracking (Wu, Li, and Luo 2014), video segmenta-
tion (Wang, Shen, and Porikli 2015) and human-computer
interaction (Xu et al. 2016). Therefore, both efficiency and
accuracy are important for the VSOD model design.

Since object motion is highly attractive to human’s atten-
tion, spatiotemporal information is essential for VSOD. Pre-
vious state-of-the-art VSOD approaches (Le and Sugimoto
2018; Li et al. 2018a; Song et al. 2018; Fan et al. 2019)
mainly rely on some traditional techniques, including 3D
ConvNet (C3D) (Tran et al. 2015), ConvLSTM (Xingjian
et al. 2015), and optical flow (Dosovitskiy et al. 2015), to
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Figure 1: The reference area of the non-local operation and
the CSA. (a) The non-local measures the pair-wise relation
on all space-time position. (b) The CSA measures the pair-
wise relation in the neighbor area of query position in con-
secutive frames.

capture the temporal information. However, these traditional
techniques can only process adjacent areas at a specific time
in the temporal domain, it is difficult for them to capture
long-range temporal information directly.

The recently proposed non-local neural network (Wang et
al. 2018) generalizes self-attention mechanism (Vaswani et
al. 2017) in machine translation. It can model long-range
temporal dependencies in video classification by learning
pairwise relationships among feature elements of different
frames. However, in VSOD, we find that the non-local op-
eration would focus on global contexts rather than motion
cues. Since the non-local is a distance-independent opera-
tion in space and time, it tends to learn global contexts that
fit all queries.

In order to model motion dependencies in the video seg-
ment, we design an alternative to non-local, named Con-
strained Self-Attention (CSA). CSA is based on the motion
prior that objects always move in a continuous trajectory.
As illustrated in Fig. 1, instead of learning dense pairwise
relationships globally, CSA learns relations in a neighbor
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Figure 2: Visualization of the attention map produced by the non-local operation and the CSA. We query two positions (#1, #2)
in frame T and get attentions of frames T and T + 5. The non-local module produces motion-independent attention because it
outputs similar attention maps for different query positions. The similar observation that the non-local module outputs query-
independent attention in object detection task was made in (Cao et al. 2019). The CSA is constrained by motion prior, which
focuses on motion cues.

area around the query position across several frames. CSA
is forced to focus on local motion patterns instead of learn-
ing global contexts. Besides, CSA significantly reduces the
overhead of memory and computation of non-local. Consid-
ering the salient object can be various scales and move at dif-
ferent speeds, we propose to group a set of CSA operations
in a Pyramid structure (PCSA). There are several merits of
applying PCSA to VSOD:

• Instead of previous methods’ encoding temporal informa-
tion progressively, PCSA can capture temporal informa-
tion in the video segment directly.

• PCSA can capture motion information of multiscale ob-
jects at various speeds.

• PCSA allows for lower memory and computation over-
head to capture temporal information.

We carry experiments on six challenge VSOD datasets
and achieve new state-of-the-art results. Our model can
reach 110 FPS at a single Titan Xp GPU. Experiments show
our PCSA outperforms the non-local in capturing motion
information, with only 0.5% FLOPs and 2% memory con-
sumption of non-local. Furthermore, we demonstrate our
model on unsupervised video object segmentation (UVOS)
task. Without CRF post-processing, our model is the first
real-time method which achieves comparable performance
to previous state-of-the-art methods.

Related Work
VSOD Architecture
Conventional VSOD models (Xi et al. 2016; Liu et al. 2016;
Tu et al. 2016; Zhang et al. 2015) usually exploit handcrafted
features. With the success of deep learning, VSOD models
use deep neural network to extract salient features. Then,
several mechanisms are explored to extend static salient de-
tection to VSOD. (Le and Sugimoto 2018) use C3D to ex-
tract features and then construct a spatiotemporal graph to
ensure time coherence. (Li et al. 2018a; Tang et al. 2018;
Chen et al. 2018) utilize optical flow to exploit motion in-
formation. The computation cost of C3D and optical flow
is usually expensive. Recent state-of-the-art methods (Song

et al. 2018; Fan et al. 2019) use the ConvLSTM structure
to propagate temporal information progressively. Compar-
ing to previous works, our PCSA can directly capture mo-
tion cues in a video segment, which is more efficient.

Self-Attention
Self-Attention (Vaswani et al. 2017) is proposed to model
long-range dependencies in machine translation. It works
by measuring the pair-wise relationships of all feature el-
ements and aggregating information based on the relation-
ships. Non-local Neural Network (Wang et al. 2018) pro-
poses a more general representation of self-attention mech-
anism. It can exploit long-range information in video clas-
sification. Following the non-local operation, several works
are presented to exploit the relationships of feature elements
and reduce the computation cost. (Yue et al. 2018) learn
explicit correlations of feature elements in both space-time
and channels. They study a compact representation of ker-
nel functions to reduce the cost of the non-local operation.
In dense prediction tasks, for example, semantic segmenta-
tion, directly applying the non-local to measure the relation-
ships of all feature elements is impractical due to the high
resolution of feature maps. (Huang et al. 2018) propose a
criss-cross method to learn sparse relationships, which sig-
nificantly reduce the computation and memory cost of non-
local. To the best of our knowledge, there is no previous
work focusing on applying self-attention mechanism to cap-
ture motion cues in VSOD. Our method bridges this gap and
shows improvement over non-local, both in efficiency and
accuracy for capturing motion cues.

Video Object Segmentation
Video Object Segmentation (VOS) (Perazzi et al. 2016) is
related to VSOD, and it mainly includes Unsupervised VOS
(UVOS) (Song et al. 2018) and semi-supervised VOS (Wang
et al. 2019b). Semi-supervised VOS aims to segment spe-
cific objects which are assigned by the first frame, while
UVOS predicts masks for primary objects in a video, with no
other hints such as reference masks. UVOS is a typical appli-
cation of VSOD, since the primary object in a video can be
detected by VSOD. A significant difference between UVOS
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Figure 3: Illustration of proposed Pyramid Constrained Self-Attention (PCSA) network. A video segment with T frames (T = 3
for example) is fed into CNN encoder to extract static salient features. The static features are split into g groups with C/g
channels (g = 4 for example), where C is the channel numbers of static features. We use g parallel CSA with different window
sizes and dilations to capture motion information.

Figure 4: Memory and FLOPs vs frames and input size of
our method and the non-local. We set default H = W =
256, T = 5 and C = 32. Then we study the influence of
different input sizes and frames to the non-local and our pro-
posed method. Notably, the PCSA has the same FLOPs with
the CSA operation.

and VSOD is that the prediction of VSOD models is a prob-
ability saliency map while UVOS models output a binary
segmentation. In this work, we show our method achieves
the best accuracy-efficiency trade-off in UVOS task.

Proposed Method
Review of the Non-local Operation
We first revisit the non-local operation (Wang et al. 2018)
and discuss the problems when applying it to VSOD.

Revisit. Suppose a video segment with T frames is fed
into the encoder, and we obtain the extracted features X ∈
RT×H×W×C as the input of the non-local operation, where
C,H,W denote the channels, height and width of the fea-
ture map, respectively. The general non-local operation has

three steps, i.e. linear embedding, affinity measuring, and
context aggregating.

In the linear embedding step, (Wang et al. 2018) suggest
using 1×1×1 convolution θ(·), φ(·), g(·) as linear function
to get the embedding features:

Q = θ(X),K = φ(X),V = g(X). (1)

Here, Q ∈ RTHW×C , K ∈ RTHW×C and V ∈ RTHW×C .
In the affinity measuring step, the non-local operation adopts
pairwise function f to compute the affinity between the fea-
ture elements in Q and K. (Wang et al. 2018) show that
different choices of f have similar performance, thus we use
the dot-product as f . Affinity measuring step can be formu-
lated as

Watt = f(Q,K) = QKT. (2)

Here, Watt ∈ RTHW×THW encodes the pair-wise affin-
ity between all space-time positions in the feature map.
In the context aggregating step, the resulting feature Y ∈
RTHW×C can be viewed as a weighted sum of the embed-
ding feature V with weight Watt:

Y = WattV. (3)

In order to incorporate the non-local operation into any pre-
trained networks, the common practice is to use a residual
connection:

Z = X+ βY. (4)

Here, β is a scale parameter which initializes to zero.

Discussion. Non-local operation is powerful in video clas-
sification task. However, it cannot be applied to VSOD di-
rectly for several reasons.

Firstly, we find that the non-local operation tends to cap-
ture global contexts instead of motion cues in VSOD. As
shown in Fig. 2, the non-local operation learns similar atten-
tion map for different querying positions. (Cao et al. 2019)
has a similar observation that the non-local operation learns
a query-independent attention in the object detection task.



Different from the object detection task, global contexts are
not suitable for predicting salient objects in a video, be-
cause object motion is more attractive to human’s attention
(Itti, Koch, and Niebur 1998). Based on the prior that ob-
jects always move in a continuous trajectory, we can con-
strain the affinity-measuring and context-aggregating region
in consecutive frames to the neighbor area of querying posi-
tion. The constrained self-attention aggregates information
from sparse positions, preventing from learning the motion-
independent responses to fit all queries. We will make a fur-
ther illustration for this point in the next subsection.

Secondly, the computation and memory costs of the non-
local operation are expensive. Because the non-local opera-
tion needs to compute pair-wise affinity between all feature
elements, the memory usage and the FLOPs for the non-
local are quadratic function with respect to the frames T and
the feature resolution H ×W . Different from video classi-
fication task, which is unnecessary to preserve spatial reso-
lution, VSOD usually outputs high resolution feature map,
thus leading to prohibitive computation and memory over-
head. Fig. 4 shows the overhead comparison between the
non-local operation and our PCSA.

Pyramid Constrained Self-Attention
In this subsection, we first introduce the Constrained Self-
Attention (CSA) operation, which can capture motion cues
effectively. Then we present a Pyramid architecture to group
several CSA (PCSA) to handle multi-scale objects at various
speeds in the video.

Constrained Self-Attention. In order to capture motion
cues in a video segment with frames T , we first get static
salient features of size T ×H×W from backbone. Then we
use three linear functions to project feature into three sub-
spaces, i.e. query Q, key K and value V space. As shown
in Fig. 3, the object in the first frame shares similar position
with that in adjacent frames. Based on this prior, when we
query a feature element xq = (t, h, w) in Q, surrounding
area of xq in feature K is used to measure affinity. By intro-
ducing a response window with radius r and dilation d, the
surrounding area S(xq,K) of xq can be formulated as

S(xq,K) =
{
K(t′ ,h′ ,w′ )

}T,h+dr,w+dr

t′=1,h′=h−dr,w′=w−dr , (5)

where S(xq,K) ∈ RTR2×C . The affinity function Eq. 2 can
be reformulated as

Watt = f(Q,K) = QS(Q,K)T. (6)

Softmax function is used to normalize the attention weight
Watt. Then we augment the static salient feature through
aggregating feature in all given frames weighted by attention
Watt. The aggregating step in Eq. 3 can be rewritten as

Y = WattS(Q,V). (7)

The attention visualization of our CSA can be found in
Fig. 2. The non-local learns a global context, while we learn
affinity-based motion cues by constraining the response

area. Comparing to ConvLSTM, which needs step-by-step
propagating temporal information, the CSA can directly ac-
cess information in multiple frames. The CSA operation can
be plugged into pretrained static SOD backbone through a
residual connection:

Z = X+Y. (8)

Comparing to the non-local operation, our computation
and memory overhead is quadratic function of frames T , but
linear function of feature size H ×W . Comparison results
can be found in Fig. 4. The CSA is more efficient than the
non-local operation. We further demonstrate the effective-
ness of the CSA in the following experiments.

Pyramid Combination. The CSA mentioned above can
capture local motion patterns by adopting a motion prior.
But the dynamic scene is rather complicated. Multi-scale
objects move at various speeds. Single window size in the
CSA cannot adapt various motions. Inspired by the multi-
head mechanism in machine translation (Vaswani et al.
2017), we project feature into different subspaces with dif-
ferent learned linear functions. Different from multi-head in
(Vaswani et al. 2017), we combine multi-head and multi-
scale learning. Specifically, we first split the input feature
X into g groups {Xi, i = 1, 2, ...g} along channel. Then
we use several parallel CSA {CSAi, i = 1, 2, ...g} with dif-
ferent window sizes r = (r1, r2, ...rg) and dilations d =
(d1, d2, ...dg) to extract motion cues from different Xi. The
result features {Yi, i = 1, 2, ...g} are concatenated, then we
perform a linear combination with 1 × 1 × 1 convolution
to get spatiotemporal feature Y. The feature Y is added to
input feature X through residual connection in Eq. 8.

The single CSA with the fixed window size R has lim-
itation of lossing moving target caused by various speeds
and scales. Comparing to the single CSA, the PCSA uses
multi-head mechanism, incorporating each head with differ-
ent window sizes and dilations to adapt different motion situ-
ations. Notably, the computation overhead of CSA are linear
function of channels number C. The PCSA first splits chan-
nels into multiple groups, thus its computation overhead is
the same as single CSA. Fig. 4 shows the computation and
memory overhead comparison. We evaluate the effective-
ness of the PCSA operation in the following experiments.

Implementation
Network Architecture. Our network is built upon Mo-
bileNetV3 (Howard et al. 2019), a light-weight backbone.
For encoder, we change the third and the last convolution
stride from 2 to 1, in order to preserve spatial resolution in
feature map. We add a modified RFB (Liu, Huang, and oth-
ers 2018) block at the head of backbone. Specially, we re-
place the vanilla convolution in RFB block by separable con-
volution. For PCSA module, we set g = 4, r = {3, 4} and
d = {1, 2}. For decoder, we use the second stage output of
the encoder as low-level feature. Then we get the spatiotem-
poral feature from PCSA output. We use a dilated convo-
lution to reduce the spatiotemporal feature dimension from
128 to 32. Bilinear interpolation is applied to upsample spa-
tiotemporal feature to match the low-level feature size. We



Test Dataset MBD MSTM STBP SCOM SCNN DLVS FGRN MBNM PDBM SSAV Ours

DAVIS
max F↑ 0.470 0.429 0.544 0.783 0.714 0.708 0.783 0.861 0.855 0.861 0.880

S↑ 0.597 0.583 0.677 0.832 0.783 0.794 0.838 0.887 0.882 0.893 0.902
MAE↓ 0.177 0.165 0.096 0.048 0.064 0.061 0.043 0.031 0.028 0.028 0.022

FBMS
max F↑ 0.487 0.500 0.595 0.797 0.762 0.759 0.767 0.816 0.821 0.865 0.831

S↑ 0.609 0.613 0.627 0.794 0.794 0.794 0.809 0.857 0.851 0.879 0.866
MAE↓ 0.206 0.177 0.152 0.079 0.095 0.091 0.088 0.047 0.064 0.040 0.041

ViSal
max F↑ 0.692 0.673 0.622 0.831 0.831 0.852 0.848 0.883 0.888 0.939 0.940

S↑ 0.726 0.749 0.629 0.762 0.847 0.881 0.861 0.898 0.907 0.943 0.946
MAE↓ 0.129 0.095 0.163 0.122 0.071 0.048 0.045 0.020 0.032 0.020 0.017

SegV2
max F↑ 0.554 0.526 0.640 0.764 - - - 0.716 0.800 0.801 0.810

S↑ 0.618 0.643 0.735 0.815 - - - 0.809 0.864 0.851 0.865
MAE↓ 0.146 0.114 0.061 0.030 - - - 0.026 0.024 0.023 0.025

VOS
max F↑ 0.562 0.336 0.403 0.690 0.609 0.675 0.669 0.670 0.742 0.742 0.747

S↑ 0.661 0.551 0.614 0.712 0.704 0.760 0.715 0.742 0.818 0.819 0.827
MAE↓ 0.158 0.145 0.105 0.162 0.109 0.099 0.097 0.099 0.078 0.073 0.065

DAVSOD
max F↑ 0.342 0.344 0.410 0.464 0.532 0.521 0.573 0.520 0.572 0.603 0.655

S↑ 0.538 0.532 0.568 0.599 0.674 0.657 0.693 0.637 0.698 0.724 0.741
MAE↓ 0.228 0.211 0.160 0.220 0.128 0.129 0.098 0.159 0.116 0.092 0.086

Runtime (s)↓ 0.02 0.02 49.49 38.8 38.5 0.47 0.09 2.63 0.05 0.05 0.009

Table 1: Comparison with previous state-of-the-art methods on six challenge VSOD datasets. ↑means larger is better and ↓means smaller is
better. Bold means the state-of-the-art performance. - means the method is trained on this dataset. We public the runtime to handle one frame
in the last row.

concat low-level feature and spatiotemporal feature, then use
a convolution (kernel=3) to get final prediction.

Loss Function. During the training phase, we use a binary
cross entropy loss function. We denote our prediction as P ,
the Ground Truth of saliency map is G. Then binary cross
entropy loss Lbce can be defined as

Lbce(P,G) = −
1

N

N∑
i=1

[gilog(pi) + (1− pi)log(1− si)] .

(9)
Here, N is the number of pixels.

Training Protocol. Our model is built based on pytorch
(Paszke et al. 2019) repository. Following previous methods,
we use an image saliency dataset to pre-train our backbone.
Then we use video datasets to finetune our PCSA module.
Total training procedure takes 15 hours on 4×rtx 2080ti.

Pre-train phase We remove the PCSA module and pre-
train our backbone with the training set of an image dataset,
i.e. DUTS (Wang et al. 2017) and two video datasets, i.e.
DAVIS (Perazzi et al. 2016) and DAVSOD (Fan et al. 2019).
We use adam optimizer with initial learning rate 2e-4 and
batch sizes 36. The learning rate decays with poly sched-
uler (decay rate=0.9). We resize input images to 256× 448.
The data augmentation methods contain randomly flip, ran-
domly crop, and multi-scale training. We use five scales
{0.5, 0.75, 1, 1.25, 1.75} when training. Pre-training takes
about 7 hours with total 15 epoches.

Method FLOPs Mem maxF MAE S

baseline - - .856 .029 .886

+ NL +10.19G +321M .861 .028 .890

r=3 +0.05G +1.61M .869 .026 .895
+ CSA r=5 +0.14G +4.48M .875 .024 .898

r=7 +0.27G +8.76M .873 .024 .897

+ PCSA +0.05G +6.44M .880 .022 .902

Table 2: Quantitative results of different models on DAVIS
test set.

Finetune phase After pre-training, we incorporate our
PCSA to the final stage of encoder. We use two video
datasets mentioned above to train whole network. We set
T = 5 and batch sizes 12 in our experiments. The initial
learning rate of PCSA and the backbone is set to 10−4 and
10−6, respectively. The learning rate schedule is the same as
pre-train phase. We randomly choose interval (={1,2,3}) to
sample frames in video for augmentation. Randomly flip and
randomly crop are also used to augment the training sam-
ples. The finetune phase takes about 9 hours with total 15
epoches.

Experiments
Experiment Setup
Dataset. We benchmark our method on six public VSOD
datasets, i.e. FBMS (Ochs, Malik, and Brox 2013), DAVIS
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Figure 5: Visual comparison with previous state-of-the-art methods. We show the results in the several complex scenes. Our
method can generate accurate saliency map in different complex scenes.

Figure 6: Accuracy vs Speed on DAVIS dataset. * means
cpu time. Our method locates at the upper right hand corner,
thus demonstrates its efficiency and effectiveness.

(Perazzi et al. 2016), DAVSOD (Fan et al. 2019), SegTrack-
V2 (Li et al. 2013), VOS (Li, Xia, and Chen 2017) and ViSal
(Wang, Shen, and Shao 2015). Totally, the whole test dataset
contains 155 videos.

Metrics. We use three criterions to evaluate our results,
i.e. MAE, Fmeasure and Smeasure. F-measure is defined as

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

. (10)

As suggested in (Achanta et al. 2009), β2 is set to 0.3. We
report the max Fmeasure as previous works (Fan et al. 2019;
Li et al. 2018a) done. MAE measures absolute pixel errors
between ground truth and our prediction:

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)| . (11)

Smeasure (Fan et al. 2017) is a newly introduced measure-
ment, focusing on the similarity of object shape.

Figure 7: Sensitive analysis of frame numbers in a video seg-
ment.

Performance Comparison
We compare our method with eleven previous state-of-the-
art methods, including four conventional methods: MBD
(Zhang et al. 2015), MSTM (Tu et al. 2016), STBP (Xi et
al. 2016), SGSP (Liu et al. 2016) and seven deep-learning
based methods: SCOM (Chen et al. 2018), SCNN (Tang et
al. 2018), DLVS (Wang, Shen, and Shao 2017), FGRN (Li
et al. 2018a), MBNM (Li et al. 2018b), PDBM (Song et al.
2018), SSAV (Fan et al. 2019). We use evaluation code pro-
vided by (Fan et al. 2019) for a fair comparison. Quantita-
tive comparison results are summarized in Tab. 1. Our PCSA
achieves state-of-the-art results in five datasets. We improve
SSAV (Fan et al. 2019) 8.45% on DAVSOD and 2.3% on
DAVIS. Besides, we achieve 5.5× faster speed than SSAV.
Fig. 5 shows the visual comparison between our method and
previous methods in several complex scenes. Results show
our method can capture motion cues in complex environ-
ments and produces accurate results.

Runtime Analysis. We measure the accuracy and speed of
different methods. Speed is tested on Intel(R) Core(TM) i7-



Dataset Metrics MotAdapt COSNet EpO+ LSMO PDB ARP LVO FSEG LMP AGS Ours

DAVIS

JMean 77.2 80.5 80.6 78.2 77.2 76.2 75.9 70.7 70.0 79.7 78.1
JRecall 87.8 93.1 95.2 89.1 90.1 91.1 89.1 83.5 85.0 91.1 90.1
FMean 77.4 79.5 75.5 75.9 74.5 70.6 72.1 65.3 65.9 77.4 78.5
FRecall 84.4 89.5 87.9 84.7 84.4 83.5 83.4 73.8 79.2 85.8 88.2

Use CRF
√ √ √ √ √ √ √

Realtime
√

Table 3: Quality comparison with UVOS methods, the results are taken down from DAVIS public leaderboard (https:
//davischallenge.org/davis2016/soa compare.html). Our method achieves real-time speed and comparable results without using
CRF post-processing.

4790K CPU and a single Titan Xp GPU. Results are shown
in Fig. 6. Conventional methods MBD and MSTM can reach
50 FPS but they are inaccurate. PDBM and SSAV can reach
20 FPS, but they are still marginally lower than real-time.
Our method locates at top-right, which demonstrates its ef-
ficiency and accuracy.

Ablation Study
Effectiveness of the PCSA. We set the pretrained back-
bone as our baseline. Then we evaluate the effectiveness of
our proposed PCSA. We also compare the PCSA with the
non-local operation and the single CSA. We investigate the
configurations of using different window sizes R on the sin-
gle CSA operation. From Tab. 2, we can find the non-local
module only achieves 0.5% improvement of baseline. Our
PCSA improves 2.9% of baseline and needs only 2% FLOPs
of the non-local. Besides, we find with the increase of the
window size, the accuracy do not increase consistently. The
single CSA with small window size r = 3 fails to capture
salient object in fast speed. The single CSA with larger win-
dow size focuses more on global context instead of motion
information. The non-local operation is the special case of
the largest window size of CSA. The PCSA integrates multi-
scale temporal information, which outperforms the single
CSA operation with the same FLOPs.

Sensitive to frame numbers in one segment. Our method
is sensitive to choose appropriate frames when exploiting
motion information. We choose T = {1, 2, 3, 4, 5, 6, 7, 8}
for evaluation. From Fig. 7, we can find the static images
(t = 1) are not beneficial to our PCSA. When T is set to 5,
the model achieves the best result. Continuously increasing
T degrades the performance of the PCSA. Because larger
time interval may cause objects to disappear in the refer-
ence window, which is harmful for the PCSA to learn motion
cues.

Performance on Unsupervised Video Object
Segmentation

We compare our method with eight state-of-the-art meth-
ods: MotAdapt (Siam et al. 2019), COSnet (Lu et al. 2019),
EpO+ (Faisal et al. 2019), LSMO (Tokmakov, Schmid, and
Alahari 2019), PDB (Song et al. 2018), ARP (Koh and Kim

2017), LVO (Tokmakov, Alahari, and Schmid 2017b), FSEG
(Jain, Xiong, and Grauman 2017), LMP (Tokmakov, Ala-
hari, and Schmid 2017a), AGS (Wang et al. 2019a). Follow-
ing the evaluation setting of UVOS, we use region similar-
ity J , boundary accuracy F for evaluation, as suggested in
(Perazzi et al. 2016). We do not use CRF post-processing.
Instead, we adopt a simple threshold method (threshold=0.4)
to binarize the saliency prediction. Tab. 3 demonstrates the
evaluation results. None of previous methods can reach real-
time speed while our method can run at 110 FPS. We achieve
the best accuarcy-efficiency trade-off in UVOS task.

Conclusion
We propose a pyramid constrained self-attention for VSOD
in this paper, which can capture motion cues efficiently. We
constrain the reference area of the non-local operation when
querying a position. Such a constraint is based on motion
prior, and prevents network from learning global context
rather than motion cues in VSOD. The pyramid structure is
used to group several CSA operations for multi-scale objects
and various speeds. Experiments show our PCSA can effec-
tively capture motion cues with much less computation and
memory usage than the non-local. Our model can reach 110
FPS on a TitanXp GPU, and achieves outstanding results in
both VSOD and UVOS tasks.
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