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Image Semantic Segmentation

* Training fully-supervised image semantic segmentation models requires
large-scale datasets with pixel-wise annotations. However, creating and
labeling such datasets demands substantial resources.

* Few-shot semantic segmentation learns to segment target classes (novel
classes) in the query image using only a few pixel-wise annotated support
images, enabling segmentation models trained on base classes to generalize
to novel classes.

(a) Original image (b) Object detection (c) Semantic Segmentation

* Nico Catalano, and Matteo Matteucci. “Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open
challenges”. arXiv preprint arXiv:2304.05832 (2023).



Few-shot Image Semantic Segmentation

* A shared feature extractor gets a feature volume from both the support set
and query images. The Masked Averge Pooling (MAP) module takes the
feature volume from the support set and masks its ground truth with the
Hadamard product (O to compute the class prototype.

* The prediction mask M, is calculated as a metric between the vector at each
spatial location in the query feature volume with the class prototype.
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Few-shot 3D Point Cloud Semantic Segmentation

* Few-shot point cloud semantic segmentation (FS-PCS) learns to segment

target classes in the gquery point cloud given a few annotated support point
clouds. This figure illustrates an example with the 2-way 1-shot setting,

which means that we have two target classes (chair and table) and one
support point cloud for each class.
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Na Zhao, Tat-Seng Chua, and Gim Hee Lee. “Few-shot 3d point cloud semantic segmentation”. In Proceedings of the
IEEE/CVF CVPR, pp. 8873-8882. 2021.



Issue 1: Foreground Leakage

* The point sampling process in previous FS-PCS is non-uniform, favoring
more points in the foreground than in the background. This leads to
foreground leakage, a noticeable density bias toward foreground classes.

Non-uniform

From left to right: (1) The original point cloud; (2) Ground truth of all categories; (3) Our
corrected input with 20,480 points in a uniform distribution; (4) Input with 20,480 points in a
biased distribution.



Issue 1: Foreground Leakage

* The current non-uniform point sampling leads to a noticeable point density
disparity between foreground and background, which induces models to
segment foreground classes by identifying denser regions, instead of
learning semantic knowledge transfer from support to query.

* Addressing this issue results in a significant performance drop in existing

methods.

| Methods | 1-shot (S3DIS) 5-shot (S3DIS) 1-shot (ScanNet) 5-shot (ScanNet)
| | S0 St mean S0 St mean S0 St mean SO St mean
AttMPTI [56] | 64.89 66.15 65.52 76.56 83.08 79.82 62.14 58.65 60.39 68.79 68.66 68.73
w/FG | QGE [29] 74.05 73.61 73.83 74.65 83.21 78.93 63.50 57.61 60.56 70.72 65.68 68.20
QGPA [11] 62.72 6195 62.33 76.30 87.29 81.80 56.47 51.72 54.10 81.57 72775 77.16
AttMPTI [56] | 41.56 41.27 41.41 50.55 46.13 48.34 33.36 31.81 32.58 37.95 36.30 37.12
w/o FG | QGE [29] 46.27 47.76 47.02 4774 59.77 53.76 3772 3464 36.18 48.73 3995 4434
QGPA [11] 35.62 41.13 38.38 4354 47.50 45.52 40.03 3554 37.78 46.17 4224 4420

Comparisons in the mloU metric between with foreground leakage (w/ FG) and without
foreground leakage (w/o FG) for existing methods. The results are for 1-way segmentation
setting. S%S! refers to the i-th split for inference.



Issue 2: Sparse Point Distribution

* The current FSPCS input 1s constrained to only 2,048 points.

* These sparsely distributed, semantically limited inputs introduce significant
ambiguities, hindering the model’s capacity to exploit semantics in the
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SCCNCS.
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From left to right: (1) The original point cloud; (2) Ground truth of all categories; (3) Our
corrected input with 20,480 points in a uniform distribution; (4) Input with 20,480 points in a
biased distribution; (5) Input with 2,048 points in a uniform distribution; (6) Input with 2,048
points in a biased distribution, as adopted by previous works.




Motivation 1: Feature Optimization vs. Correlation Optimization
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Motivation 2: Base Susceptibility Problem

* Within the meta-learning framework, models undergo training on seen/base
classes and are evaluated on unseen/novel classes.

* These models tend to be susceptible to the base classes within test scenes,
thereby hindering the accurate segmentation of novel classes.
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Correlation Optimization Segmentation (COSeg)

Base Prototypes Calibration (BPC)
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HCA: Hyper Correlation Augmentation, a carefully designed module
query-support correlation optimization. Please see the paper for details.

for

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking

Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.




Class-specific Multi-prototypical Correlation (CMC)

Foreground prototypes Py, and background prototypes P, are obtained
through two steps: sample seeds in the coordinate space based on farthest
point sampling, and then conduct point-to-seed clustering as follows:

Pfg — -Fclus(Fs ®© Ys; ng); ng — ffps(Ls ® Ys)a
Pbg — -Fclus(FS © ?s; Sbg), Sbg — -Ffps(Ls © ?s)

We compute the cosine similarities of query points with respect to P, and
Py, and obtain the correlations:

Fq P,
¥l ||PT,

F,-PJ,

Ce =
) ‘ng

’ Cbg -
IFql

We concatenate Cg, and C,, along the second dimension and project the last
dimension back to D using an MLP, as follows:

Cg — lep(cfg & Cbg) c RNQ X Nc XD

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking
Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.



Hyper Correlation Augmentation (HCA)

* We permute Cél with the class dimension as its first dimension and then
compute linear attention across points:

Cf;_l — flnatt(T(qu)) < RNCXNQXD

* Following the attention layer, an MLP is applied:

C£:1—|—2 _ fmlp(ci;_l) c RNCXNQ X D

* We rearrange the dimensions and apply linear attention, given by:

Cé—l—?) _ f.lnatt(T(C?_Q)) c RNQ XNc XD

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking
Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.



Base Prototypes Calibration (BPC)

* During meta learning, we calculate the Masked Average Pooling (MAP) for
each base class present in the current point clouds:

Pl’o — fpool(Fs/qQY]sa/q) € RIXDv

Py < upp + (1 — p)pi,

 We calculate the base correlations C,,,. between the query and base
prototypes:

T
Fo - ZUpo}nt)"  _ pvosn,
T
IRl ||Ztpe 1))

Cbase —

* The background correlations are calibrated by C
foreground correlations:

Cguide — ]:max(cbase) S RNQ

auide DETOTE Interacting with

Cfl+2[17 R ] — ‘FfC(Cg+2[17 " ] D D(Cguide))

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking
Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.



Quantitative Comparison

| Methods 1-way 1-shot 1-way 5-shot 2-way 1-shot 2-way 5-shot
\ Sv St mean S0 St mean SY St mean SY St mean
AtMPTI [56] | 36.32 38.36 37.34 46.71 4270 4471 31.09 2962 30.36 30.53 3262 36.08
S3DIS [1 QGE [29] 41.69 39.09 40.39 50.59 46.41 48.50 3345 3095 3220 40.53 36.13 38.33
[1] QGPA [11] 35.50 3583 35.67 38.07 3970 38.89 25.52 26.26 25.89 30.22 3241 31.32
COSeg (ours) | 46.31 48.10 47.21 51.40 48.68 50.04 3744 3645 36.95 42.27 38.45 40.36
AtMPTI [56] | 34.03 30.97 32.50 39.09 37.15 38.12 2599 2388 2494 30.41 2735 28.8%
ScanNet [7] QGE [29] 37.38 33.02 35.20 45.08 41.89 43.49 26.85 25.17 26.01 28.35 3149 2992
QGPA [11] 34.57 3337 33,97 41.22 38.65 39.94 21.86 2147 21.67 30.67 27.69 29,18
COSeg (ours) | 41.73 41.82 41.78 48.31 44.11 46.21 28.72 28.83 28.78 35.97 33.39 34.68

Comparisons in the mloU metric between our method and baselines in the new FS-PCS setting.

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking

Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.




Qualitative Comparison

Support Support Mask Ground Truth QGE

Qualitative comparisons between our proposed model COSeg and QGE (SOTA method). Each
row, from top to bottom, represents the 1-way 1-shot task with the target category as floor
(blue), chair (red), and table (purple), respectively.

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking
Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.



Qualitative Comparison

Support Support Mask Query Ground Truth w/ BPC w/o BPC

Visual comparisons between our models with BPC (w/ BPC) and without BPC (w/o BPC). Each
row corresponds to the 1-way 1-shot task targeting bookcase (green) and chair (red),
respectively, arranged from top to bottom.

BPC: Base Prototypes Calibration

C O d e . https://github.com/Zhaochong An/COSeg

* Zhaochong An, Guolei Sun*, Yun Liu*, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and Serge Belongie. “Rethinking
Few-shot 3D Point Cloud Semantic Segmentation”. IEEE CVPR, 2024.


https://github.com/ZhaochongAn/COSeg

Multimodal Learning

* Multimodal learning is a type of deep learning that integrates and processes
multiple types of data, referred to as modalities, such as text, audio, images,

or video.

* Large multimodal models, such as Google Gemini and GPT-40, have
become increasingly popular since 2023, enabling increased versatility and
a broader understanding of real-world phenomena.
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* https://en.wikipedia.org/wiki/Multimodal learning
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Unimodal FS-PCS vs. Multimodal FS-PCS

* Previous FS-PCS methods (left) only make use of point clouds as unimodal
input. In contrast, our proposed model (right) utilizes cost-free multimodal
information to improve FS-PCS by considering the textual modality of class
names (explicit) and learning the simulated features of the 2D modality
(implicit). During meta-learning and inference, the 2D modality 1s not
needed.
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* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.



Overall Architecture of Multimodal FS-PCS

* Given support and query point clouds, we first generate intermodal features
s/q from the IF head and unimodal features F_, from the UF head. These
features are then forwarded to the MCF module to generate initial

multimodal correlations Cj,.

“Bookcase” |

Class Names

Text $
Encoder

Text Embedding T

(@ Addition
X

Multiplication

- Support mask Y,

¢ _1 Only in testing

x K
. Gq
F, Z < £
> w Z) 7
e s L] =]
———————— C
i / K
E'P Fh‘ 1 G, I A
= | [ e | LT P 8
g L Co lf Y, G,
(e]
:Adapter\ /
F! Correlation I indicator
— Generation . @ I
|
un A Gq
FH » Correlation | _~ 4 | |  —-o=-o=mmmmems
r +| Generation ct
MCF

Prediction P,
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Feature Extractors

 The IF head extracts intermodal features that are aligned with 2D visual
features by exploiting the 2D modality, while the UF head focuses solely on
the 3D point cloud modality.

Fl = Hip(F) € RVs*Pt FY = Hyp(Fy) € RVs*P,
Fl = Hip(Fq) € RYe*Pt FU = Hyp(Fq) € RVexP,

* In the pretraining, we employ a cosine similarity loss to minimize the
distance between 3D point intermodal features and corresponding 2D pixel
features. Then, we fix the backbone and IF head during meta-learning.

* We compute embeddings for the “background” and target classes using the
LSeg text encoder, denoted as T = {tg,--- ,ty} € RNcxDr

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.



Multimodal Correlation Fusion (MCF)

Prototypes are generated from the annotated support points for both

intermodal and unimodal features. The correlations between the query

points and these prototypes:
Ci Fl Pproto

Py

Fu Pproto
R

proto H proto H

The MCF module transforms these correlations using two linear layers and
then combines them to obtain the aggregated multimodal correlation C,, as
follows:

CO — flin(ci) T ﬂin(cu)a CO S RNQXNCXD

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.



Overall Architecture of Multimodal FS-PCS

* For exploiting the alignment between intermodal features F}, and text
embeddings T, we use their affinity G, as the informative textual semantic
guidance to refine the multimodal correlations in the MSF modules. Finally,
we propose the TACC, a parameter-free module that adaptively calibrates
predictions during test time to effectively mitigate the base bias issue.
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Multimodal Semantic Fusion (MSF)

* We first compute the similarity between the query intermodal features and
text embeddings to generate semantic guidance:

G,=F, - TT

* Point-category weights to consider varying importance between visual and
textual modalities are dynamically computed as follows:

Wq = Futp(Fexpand (Gq) ® Ck),  Wq € RV e

* The semantic guidance G, weighted by W, is aggregated into the
correlation mput C, :

L — Gq © Wq + Ck7
Ck_|_1 — fmlp (fattention(cic))

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.



Test-time Adaptive Cross-modal Calibration (TACC)

* We propose an adaptive combination of the semantic guidance G, and the
prediction P through an adaptive indicator v:

IA)q =7Gq + Pq

* Using the support intermodal features F and the text embeddings T, we
compute G,, which is then used to generate the predicted labels P,. With the
available support labels Y in each episode, the quality of GyG, is
quantified by comparing the predicted labels P, to Y, using the Intersection-
over-Union (IoU) score.

: : ]‘ 1 7 . 1
v = (P ()=1NY-(0)=1) , Psli]| = argmax(Gg [7,:]), Gs =F, - TT
> i Lep ()=1vY.(i)=1}

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.



Quantitative Comparison

Methods | 1-way 1-shot \ 1-way 5-shot \ 2-way 1-shot | 2-way 5-shot

| s° St Mean | SY St Mean | S° St Mean | S° St Mean
AtMPTT (zhao et ar. 2021y || 36.32  38.36 37.34 46.71 4270 44.71 31.09 29.62 30.36 39.53 32.62 36.08
QGE (xingotat. 2009, 4169 3909 4039 | 5059 4641 4850 | 33.45 3095 3220 | 4053 3613 3833
QGPA (1. ot a1, 2023) 3550 3583 3567 | 38.07 3970 3880 | 2552 2626 2589 |3022 3241 3132
COSEL (an e 2004, 4631 48.10 4721 | 5140 4868  50.04 | 37.44 3645 3695 | 4227 3845 4036
COSeg yyuiu any || 4717 4837 47.77 | 5093 49.88 5041 | 37.15 3899 3807 | 4273 4025  41.49
MM-FSS (ours) | 49.84 54.33 52.09:43) | 51.95 56.46 54.21:3s) | 41.98 46.61 443062 | 46.02 54.29  50.16(+5.7)

Table 1: Quantitative comparison with previous methods in mIoU (%) on the S3DIS dataset.
There are four few-shot settings: 1/2-way 1/5-shot. S°/S? refers to using the split 7 for evaluation,
and ‘Mean’ represents the average mloU on both splits. The best results are highlighted in bold.

Methods I 1-way 1-shot \ 1-way 5-shot \ 2-way 1-shot | 2-way 5-shot

| S° St mean | S° St Mean | S° St Mean | S° St Mean
AtMPTT zna0 et ar. 2021y || 34.03  30.97 32.50 39.09 37.15 38.12 2599 2388 24.94 3041 27.35 28.88
QGE (ing et . 2029) 3738 3302 3520 | 4508 41.89 4349 | 2685 2517 2601 | 2835 3149  29.92
QGPA (10 ctat. 2029) 3457 3337 3397 | 4122 3865 3994 |21.86 2147 2167 | 30.67 2769  29.18
COSe xrera a0y, || 4173 4182 4178 | 4831 4411 4621 | 2872 2883 2878 | 3597 3330  34.68
COSeg! pueiu a0y || 4195 4207 4201 | 4854 4468 4661 | 2954 2851 2903 | 3687 3415 3551
MM-FSS (ours) ” 46.08 43.37 44.73+27 ‘ 54.66 4548 50.07+3.5 | 43.99 3443 39.21(+10.2) ‘ 48.86 3932 44.09:s.6)

Table 2: Quantitative comparison with previous methods in mIoU (%) on the ScanNet dataset.

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.



Qualitative Comparison

=

Support Mask
Figure 3: Qualitative comparison between COSeg and our proposed MM-FSS in the 1-way
1-shot setting on the S3DIS dataset. The target classes in the first and second rows are sofa and
wimIU\Cs ectigel ..Important areas are marked with circles.

6d e https://github.com/ZhaochongAn/Multimodality-3D-Few-Shot

Ground Truth COSeg MM-FSS (Ours)

Support Support Mask Query Ground Truth IF Head UF Head Default

Figure 4: Qualitative comparison of predictions from each head and our final prediction using
TACC (Default) in the 1-way 1-shot setting on the S3DIS dataset. The target classes in the first
and second rows are and , respectively.

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, and Serge Belongie.
“Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation”. ICLR 2025.


https://github.com/ZhaochongAn/Multimodality-3D-Few-Shot

Few-shot Seg. vs. Generalized Few-shot Seg.

* Few-shot segmentation requires additional support samples for each novel
class at inference and only predicts novel classes, ignoring base classes.

* Generalized Few-shot segmentation directly segments both base and novel
classes after few-shot adaptation, making it more practical for real-world
applications.

* GFS-PCS: Generalized Few-shot 3D Point Cloud Segmentation
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* Zhe Xu, Kaize Ding, Yu-Xiong Wang, Huan Liu, and Hanghang Tong. “Generalized few-shot node classification: toward an
uncertainty-based solution”. Knowledge and Information Systems 2024.



Challenge in GFS-PCS

* Prior work primarily enhances prototypes through interaction modules that
integrate support/query features, making predictions based on refined

prototypes. However, they are limited by the sparse knowledge from few-
shot samples.
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* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie. “Generalized Few-shot
3D Point Cloud Segmentation with Vision-Language Model”. IEEE CVPR, 2025.



GFS-PCS with 3D Vision-Language Models (3D VLMys)

* Our framework addresses this limitation by leveraging the extensive open-
world knowledge from 3D VLMs through pseudo-labels. We mitigate the
noise inherent in 3D VLMs by calibrating their raw pseudo-labels with
precise few-shot samples, thereby effectively expanding novel class
knowledge while ensuring reliability.
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* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie. “Generalized Few-shot
3D Point Cloud Segmentation with Vision-Language Model”. IEEE CVPR, 2025.



GFS-PCS with 3D Vision-Language Models (3D VLMys)

Given an input point cloud X, , we apply a novel-base mix to embed
support samples into the training scene while preserving essential context.
The scene is then processed by a 3D VLM, using all class names as prompts
to generate raw predictions Y . Leveraging support prototypes{p°} , the
raw predictions undergo pseudo-label selection to filter out noisy regions,
followed by adaptive inﬁlling to label the filtered, unlabeled areas, yielding
refined supervision Yy, for training the 3D segmentor.
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* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie. “Generalized Few-shot
3D Point Cloud Segmentation with Vision-Language Model”. IEEE CVPR, 2025.



GFS-PCS with 3D Vision-Language Models (3D VLMys)

* Visual illustration of mixing strategies. The red and green boxes represent
the two novel samples mixed into the scene.

Instance Mix Mix3D Novel-Base Mix (Ours)

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie. “Generalized Few-shot
3D Point Cloud Segmentation with Vision-Language Model”. IEEE CVPR, 2025.



GFS-PCS with 3D Vision-Language Models (3D VLMys)

* (¢) (d) 1llustrate the details of the pseudo-label selection and adaptive

infilling processes, respectively.
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* We further propose two new and more challenging evaluation benchmarks
based on ScanNet200 and ScanNet++ datasets.

Dataset Base Novel | Max (F) Min (F) Max (P) Min (P)
S3DIS 7 6 185 29 59,929 30,013
ScanNet 13 6 411 133 4,479 1,148
ScanNet200 12 45 733 102 12,641 279
ScanNet++ 12 18 143 82 84,375 604

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie. “Generalized Few-shot
3D Point Cloud Segmentation with Vision-Language Model”. IEEE CVPR, 2025.



Quantitative Comparison

Method | 5-shot 1-shot

| mloU-B mloU-N mloU-A HM mloU-B mloU-N mloU-A HM
Fully Supervised ‘ 68.70 39.32 4551 50.02 63.70 39.32 45.51 50.02
PIFS [4] 28.78 3.82 9.07 6.71 17.84 2.87 6.02 4 88
attMPTI [77] 37.13 4.99 11.76 8.79 54.84 3.28 14.14 6.17
COSeg [2] 57.67 5.21 16.25 9.54 47.03 4.03 13.09 742
GW [66] 59.28 8.30 19.03 14.55 55.23 6.47 16.74 11.56
GFS-VL (ours) 67.57 31.67 39.23 43.12 68.48 29.18 3745 40.92

Table 2. Comparisons of our method with baselines on the new ScanNet200 benchmark. The best results are highlighted in bold.

| 5-shot 1-shot
Method

| mloU-B mloU-N mloU-A HM mloU-B mloU-N mloU-A HM
Fully Supervised | 65.45 37.24 48.53 47.47 65.45 37.24 48.53 47.47
PIFS [4] 39.98 5.74 19.44 10.03 36.66 495 17.63 8.71
attMPTI [77] 55.89 4.19 24.87 7.78 53.16 3.55 23.40 6.66
COSeg [2] 59.34 6.96 2791 12.45 58.49 6.24 27.14 11.26
GW [66] 51.35 11.03 27.16 18.15 46.71 6.63 22.66 11.59
GFS-VL (ours) 60.05 21.66 37.02 31.82 61.39 19.42 36.21 29.47

Table 3. Comparisons of our method with baselines on the new ScanNet++ benchmark. The best results are highlighted in bold.

Method | 5-shot 1-shot

| mloU-B mloU-N mloU-A HM mloU-B mloU-N mloU-A HM
Fully Supervised | 78.71 60.37 7291 68.33 78.71 60.37 72.91 68.33
attMPTI [77] 16.31 3.12 12.35 5.21 12.97 1.62 9.57 2.88
PIFS [4] 35.14 3.21 25.56 5.88 35.80 2.54 25.82 475
CAPL [56] 38.22 14.39 31.07 20.88 38.70 10.59 30.27 16.53
GW [66] 40.18 18.58 33.70 25.39 40.06 14.78 32.47 21.55
GFS-VL (ours) 78.30 51.22 69.75 61.91 78.56 49.72 69.45 60.88

Table 4. Comparisons of our method with baselines on the old ScanNet benchmark. The best results are highlighted in bold.



Qualitative Comparison

* Visualization of the improvements in pseudo-label quality after applying
Pseudo-label Selection (PS) and Adaptive Infilling (AI). Note that Al
effectively discovers missed novel classes in the red circles and completes
partial pseudo-labels in the green circles.

Base Class Labels Full Class labels Raw Pseudo-Label After PS

C 0 d C. https://github.com/ZhaochongAn/GFS-VL

* Zhaochong An, Guolei Sun*, Yun Liu*, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie. “Generalized Few-shot
3D Point Cloud Segmentation with Vision-Language Model”. IEEE CVPR, 2025.
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