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Exploiting Temporal State Space Sharing for Video Semantic Segmentation

Supplementary Material

This supplementary material provides more results that001
enhance and extend the findings presented in the main002
manuscript. Due to space constraints, certain details and003
experiments were omitted from the primary manuscript.004
Specifically, Sec. A presents more ablation studies that of-005
fer deeper insights into the proposed TV3S model. Sec. B006
details the latest performance results substantiating the ef-007
ficacy of our proposed method through a more fair and re-008
fined training procedure. Sec. C showcases an expanded009
set of visual results demonstrating the segmentation capa-010
bilities of TV3S, alongside comparative analyses with addi-011
tional models including MRCFA.012

A. Additional Ablation Studies013

Following the main text, all ablation studies were conducted014
on the VSPW dataset [8] using the MiT-B1 and Swin-015
T backbones, adhering to the same training and inference016
strategies outlined in the main text.017

Effect of spatial information extraction. To assess018
the effectiveness of our proposed TV3S architecture in019
extracting spatial information, we conducted experiments020
using single-frame inputs and compared the performance021
against baseline segmentation models and other video se-022
mantic segmentation (VSS) methods[9, 10], as presented023
in Tab. 1. While VSS methods are inherently designed for024
multi-frame processing, this evaluation isolates their ability025
to handle spatial features independently. For a fair compar-026
ison, we evaluated our model with and without the TV3S027
blocks, noting that our architecture can utilize the tempo-028
ral blocks even when only one frame is provided. The re-029
sults demonstrate that our model not only performs on par030
with the baseline when the TV3S blocks are excluded but031
also significantly outperforms it when the blocks are in-032
cluded. In contrast, other VSS methods exhibit reduced per-033
formance in single-frame evaluations, reflecting their ability034
to partially adapt to single-frame inputs despite their multi-035
frame design. These findings indicate that our TV3S model036
effectively captures spatial information and maintains ro-037
bust performance even without temporal context, showcas-038
ing its superiority in both spatial and spatiotemporal seg-039
mentation tasks.040

Effect of the number of TV3S blocks. As detailed in041
the main text, the MiT-B1 backbone exhibited enhanced042
performance with an increasing number of TV3S blocks,043
achieving a mIoU of 40.0 and improved temporal consis-044
tency metrics (mVC8 = 90.7, mVC16 = 87.0) when utiliz-045
ing four blocks, as shown in Tab. 3. Extending this eval-046
uation to the Swin-T [7] backbone and maintaining a con-047

Methods Backbones mIoU↑ WIoU

Segformer [13] MiT-B1 36.5 58.8
CFFM [9] MiT-B1 37.1 59.0
MRCFA [10] MiT-B1 37.0 58.8
TV3S (Ours) MiT-B1 37.7 59.2
TV3S (+Blocks) MiT-B1 38.6 60.3
Segformer [13] MiT-B2 43.9 63.7
CFFM [9] MiT-B2 43.6 63.3
MRCFA [10] MiT-B2 43.4 63.5
TV3S (Ours) MiT-B2 43.8 62.8
TV3S (+Blocks) MiT-B2 44.9 63.7

Segformer [13] MiT-B5 48.9 65.1
CFFM [9] MiT-B5 48.3 65.8
MRCFA [10] MiT-B5 48.0 65.3
TV3S (Ours) MiT-B5 48.9 66.0
TV3S (+Blocks) MiT-B5 49.5 66.4

Mask2Former [2] Swin-T 41.2 62.6
TV3S (Ours) Swin-T 42.8 62.4
TV3S (+Blocks) Swin-T 43.8 62.6
Mask2Former [2] Swin-S 42.1 63.1
TV3S (Ours) Swin-S 49.5 65.8
TV3S (+Blocks) Swin-S 50.5 66.2

Table 1. Comparative effectiveness of models in extracting spatial
information from single-frame inputs on the VSPW dataset [8],
with our proposed method outperforming existing models.

sistent framework, the Swin-T backbone attained a mIoU 048
of 44.90 with four blocks, closely aligning with its peak 049
performance of 45.11 achieved using two blocks. Addition- 050
ally, temporal consistency metrics (mVC8 = 88.0, mVC16 = 051
83.5) remained stable across different block configurations. 052
These findings indicate that, while the MiT-B1 backbone 053
benefits significantly from an increased number of TV3S 054
blocks, the Swin-T backbone maintains robust performance 055
with a standardized four-block setup, underscoring the ef- 056
fectiveness of a unified framework for diverse backbones. 057

Training with different temporal context. We 058
assessed the impact of varying the number of tem- 059
plate frames during training on the MiT-B1 backbone 060
variant of TV3S, as detailed in Tab. 4. Specifi- 061
cally, the model was trained with one ({It−3, It}), two 062
({It−6, It−3, It}), three ({It−9, It−6, It−3, It}) and five 063
({It−15, It−12, It−9, It−6, It−3, It}) template frames. The 064
results indicate a clear improvement in visual consistency as 065
the number of templates increases, showcasing the model’s 066
enhanced ability to maintain temporal coherence, attributed 067
to the specialized training methodology. However, while 068
using five templates yielded the highest mVC values, the 069
mIoU performance peaked with three templates, offering 070
a balanced trade-off between segmentation accuracy and 071
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Methods Backbones mIoU↑ mVC8↑ mVC16↑ GFLOPs↓ Params(M)↓ FPS↑
Mask2Former [2] R50 38.5 81.3 76.4 110.6 44.0 19.4
MPVSS [11] R50 37.5 84.1 77.2 38.9 84.1 33.9
Mask2Former [2] R101 39.3 82.5 77.6 141.3 63.0 16.9
MPVSS [11] R101 38.8 84.8 79.6 45.1 103.1 32.3
DeepLabv3+ [1] R101 34.7 83.2 78.2 379.0 62.7 9.2
UperNet [12] R101 36.5 82.6 76.1 403.6 83.2 16.0
PSPNet [15] R101 36.5 84.2 79.6 401.8 70.5 13.8
OCRNet [14] R101 36.7 84.0 79.0 361.7 58.1 14.3
TCB [8] R101 37.8 87.9 84.0 1692 - -
ETC [5] OCRNet 37.5 84.1 79.1 361.7 - -
Segformer [13] MiT-B5 48.9 87.8 83.7 185.0 82.1 9.4
CFFM [9] MiT-B5 49.3 90.8 87.1 413.5 85.5 4.5
MRCFA [10] MiT-B5 49.9 90.9 87.4 373.0 84.5 5.0
TV3S (Ours) MiT-B5 50.4 91.9 89.1 137.0 85.6 14.0

Table 2. Updated quantitative comparison of our MiT-B5 model [13] with existing methods on the VSPW dataset [8]. Our model achieves
the best balance among accuracy, model complexity, and operational speed. FPS and FLOPs are calculated with an input resolution of 480
× 853.

Backbones TV3S Blocks mIoU mVC8 mVC16

MiT-B1

1 38.4 88.3 83.7
2 39.2 89.5 85.3
3 39.6 88.7 84.2
4 40.0 90.7 87.0

Swin-T

1 44.66 87.9 83.3
2 45.11 88.4 83.9
3 44.41 88.3 83.8
4 44.90 88.0 83.5

Table 3. Performance metrics based on the number of TV3S
blocks in the model.

Templates No. mIoU mVC8 mVC16

1 38.1 90.3 83.6
2 37.6 90.5 84.3
3 40.0 90.7 87.0
5 38.1 91.2 88.0

Table 4. Evaluation based on the number of templates exposed
during training.

temporal consistency. Although further fine-tuning could072
refine the model for specific scenarios, the configuration073
with three templates is recommended for its optimal bal-074
ance, aligning with findings from [8]. This configuration075
ensures the model operates effectively within practical con-076
straints while leveraging its temporal modeling strengths.077

Applicability of Bi-directional Scanning. We investi-078
gated the use of bi-directional scanning, a technique preva-079
lent in recent vision-based approaches utilizing mamba080
[3, 6, 16], in the MiT-B1 variant of TV3S (see Tab. 5).081
This method involved scanning the encoded feature space082
in both directions, with or without adding embeddings dur-083
ing the scanning process, effectively doubling the computa-084

Models Evaluation (mIoU)

Bi Bi+Embed Direct

1 TSS (No Shift) 37.33 38.0 38.0
TV3S (No Shift) 38.0 38.4 38.9

TV3S (Shift) 39.6 37.6 39.5

Table 5. Implications of using bi-directional representation with
embedding on the proposed architecture.

Methods Backbones mIoU mVC8 mVC16

VideoMamba MiT-B1 36.2 83.9 78.7
TV3S MiT-B1 40.0 90.7 87.0

MPVSS Swin-B 52.6 89.5 85.9
MPVSS Swin-L 53.9 89.6 85.8
TV3S Swin-B 53.0 90.3 86.8
TV3S Swin-L 55.6 90.7 87.5

Table 6. Additional Experiments with VideoMamba[4] as decoder
and with bigger Swin Transformer backbones

tional load for the decoder. The experimental results in- 085
dicated that incorporating bi-directional scanning did not 086
enhance performance and, in some cases, led to degrada- 087
tion. We believe that this decline may be due to two fac- 088
tors: first, the implementation was conducted in a pixel- 089
wise manner within the encoded feature space, differing 090
from the patch-wise approach in the original mamba imple- 091
mentations; second, scanning the same feature space twice 092
might disrupt the continuity of information, potentially hin- 093
dering the model’s ability to maintain performance. Con- 094
sequently, these findings suggest that while bi-directional 095
scanning is effective in certain contexts, its application as 096
a decoder in the present architecture did not yield benefits 097
and may require further methodological refinements. 098

Additional Experiments. Extended experiments were 099
conducted during the rebuttal phase, which included testing 100
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Figure 1. Additional examples showcasing the performance of the proposed TVSS architecture compared with other VSS methods,
demonstrating visual consistency and accuracy.

VideoMamba[4] and larger backbones of Swin[7], specifi-101
cally its Swin-B and Swin-L variants, as tabulated in Tab. 6.102
For the experiments with VideoMamba, we used the MiT-103
B1 backbone in conjunction with VideoMamba as the de-104
coder. It was observed that VideoMamba only achieved a105
mean Intersection over Union (mIoU) of 36.24, while our106
TV3S framework achieved an mIoU of 40.0, thanks to its107
effective state propagation and shifted-window mechanism,108
making it ideal for dense prediction tasks.109

As for the experiments involving larger backbones, it110
was noted that by directly extending the current framework111

without hyper-parameter tuning, we achieved mIoU scores 112
that are better than the performance of MPVSS. This find- 113
ing highlights the robustness of our approach and ensures 114
fair comparisons with other methods. 115

B. Updated Performance 116

Our initial training setup for the TV3S architecture, based 117
on the MMSegmentation codebase, utilized two A100 118
NVIDIA GPUs with a batch size of 2 and trained the 119
model for 160k iterations using three reference frames. 120
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(a) (b)

Figure 2. Failure cases of the proposed method: (a) errors in the presence of transparent objects and (b) initial segmentation errors
propagating temporarily before being corrected.

This configuration resulted in strong temporal consistency121
metrics (mVC8 and mVC16), achieving a good trade-off122
between computational efficiency and frames per second123
(FPS). However, compared to other video semantic segmen-124
tation (VSS) methods that were trained using four GPUs,125
our model was exposed to fewer data variants, potentially126
impacting its generalization capabilities.127

To ensure a fairer comparison, we extended the train-128
ing duration by an additional 80k iterations, totalling 240k129
iterations—a 50% increase in training time. This adjust-130
ment compensates for the advantages other methods gain131
from using more GPUs, such as exposure to a wider vari-132
ety of data and improved generalization. Concurrently, we133
halved the learning rate to 3e-5 from 6e-5 to maintain effec-134
tive learning without overshooting, keeping the optimizer135
and learning rate scheduler configurations consistent.136

Under this training setup, as shown in Tab. 2 , our pro-137
posed TV3S architecture achieved state-of-the-art perfor-138
mance across all evaluated metrics, including mean Inter-139
section over Union (mIoU) and temporal consistency met-140
rics (mVC8 and mVC16).141

C. Additional Qualitative Examples142

In this section, we present qualitative examples to further143
demonstrate the effectiveness of the proposed TVSS ar-144
chitecture. As shown in Fig. 1, the segmentation outputs145
from TVSS are compared with those from other state-of-146

the-art video semantic segmentation (VSS) methods. The 147
examples illustrate how TVSS maintains good visual con- 148
sistency across consecutive frames while achieving accu- 149
rate segmentation. These results underline the advantages 150
of the temporal state-sharing mechanism, which effectively 151
propagates temporal information and reduces inconsisten- 152
cies commonly observed in other methods. The visualiza- 153
tions in Fig. 1 provide a clear, comparative insight into how 154
TVSS handles challenging scenarios, reinforcing the quan- 155
titative results discussed earlier. 156

C.1. Success Cases 157

The proposed TVSS architecture excels in ensuring both 158
stability and continuity in the segmentation process across 159
frames, maintaining a high level of consistency even in dy- 160
namic and complex environments. The following examples 161
demonstrate the architecture’s ability to preserve these qual- 162
ities in challenging visual sequences. 163

(a) Temporal continuity and object consistency: One 164
of the standout features of TVSS is its ability to maintain 165
temporal continuity. In the provided sequences, the model 166
shows a consistent and stable segmentation of dynamic ob- 167
jects, such as waterfalls, people, or animals, across multiple 168
frames. This is particularly evident in cases where objects 169
remain in motion or where the background changes slightly, 170
but the segmentation boundaries remain stable, offering a 171
smooth transition between frames. 172
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Figure 3. Visual comparison of segmentation results with 1, 8, and 32 exposed frames during inference.

(b) Robust segmentation in variable environments: In173
more challenging scenes, including those with changing174
lighting or background complexity, TVSS continues to175
show visual stability. The segmentation boundaries are not176
only preserved, but also remain consistent across frames,177
regardless of the varying environmental conditions. The ar-178
chitecture’s robustness to these changes ensures that even179
as new elements or disturbances appear, the model still pro-180
vides coherent and unified segmentation results, reflecting181
its strong capacity to maintain accuracy over time.182

These success cases underline the TVSS architecture’s183
ability to offer consistent and continuous segmentation of184
objects, crucial for maintaining visual coherence across185
video sequences. The model’s strength lies in its ability186
to handle the temporal aspect of visual data, ensuring that187
segmentation evolves seamlessly across frames without dis-188
ruptions.189

C.2. Failure Cases190

While the proposed TVSS architecture demonstrates robust191
performance across various scenarios, it is not without limi-192
tations. Fig. 2 illustrates two primary challenging scenarios193
where the model encounters difficulties.194

(a) Transparent objects: The first set of failure cases195
involves the presence of transparent objects. Transparent196
materials often present ambiguous visual cues, making it197
challenging for segmentation models to accurately delineate198
boundaries and classify regions. In these instances, TVSS199
may misinterpret the transparency, leading to incorrect seg-200
mentation of the object or its background.201

(b) Error propagation from initial mis-classification:202
The second set of challenges pertains to the propagation203
of initial segmentation errors. When the model makes an204
initial misclassification in a frame, this error can propa-205
gate to subsequent frames due to the temporal state-sharing206

mechanism. Although TVSS is designed to leverage tempo- 207
ral information to enhance consistency, early mistakes can 208
temporarily degrade segmentation accuracy until corrective 209
learning occurs in subsequent frames. 210

These failure cases highlight areas for potential improve- 211
ment, such as incorporating specialized modules for han- 212
dling transparent materials and enhancing error correction 213
mechanisms to mitigate the impact of initial misclassifica- 214
tions. Addressing these challenges will further strengthen 215
the reliability and applicability of the TVSS architecture in 216
diverse and complex environments. 217

C.3. Additional Visualizations 218

To qualitatively analyze segmentation consistency in videos 219
and its effect based on the number of frames used during 220
inference, we present Fig. 3. Visual comparisons demon- 221
strate that the results from using only one frame exhibit 222
rough and fragmented segmentations. In contrast, predic- 223
tions made using eight or thirty-two frames show smoother 224
and more refined boundaries, closely resembling the ground 225
truth (GT). This observation underscores the model’s abil- 226
ity to effectively integrate temporal information, leading to 227
better object delineation and improved segmentation bound- 228
aries. The enhanced consistency and quality of segmen- 229
tation suggest that incorporating more frames enables the 230
model to capture dynamic features and contextual infor- 231
mation more effectively, particularly in challenging or am- 232
biguous areas. This improvement can be attributed to the 233
model’s capacity to learn from the additional frames, result- 234
ing in a more accurate representation of the scene. This is 235
especially apparent in complex or cluttered environments, 236
where utilizing multiple frames significantly enhances the 237
robustness and overall accuracy of the segmentation. 238
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