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1. Additional Details on Novel-Base Mix

To effectively utilize support samples, the Novel-Base Mix
approach is designed to integrate them into the base train-
ing inputs while preserving essential scene context. This
ensures effective learning of challenging novel classes. We
provide the pseudo-code for Novel-Base Mix in Algo-
rithm 1. Below, we present a step-by-step explanation of
the process.

Step 1.  The process begins with cropping the region of
novel objects from the novel point cloud. Given the ran-
domly sampled novel point cloud and its corresponding bi-
nary mask, a cropping operation is applied to extract the rel-
evant local region. This ensures that only the novel object
region is considered for mixing, while extraneous unneces-
sary points are excluded.

Step 2. Next, to align the cropped novel sample with the
base point cloud, we identify key spatial anchors in the XY
plane. These anchors correspond to the top, bottom, left,
and rightmost corner points of both the base point cloud
and the cropped novel point cloud. These anchors serve as
reference points for spatial alignment in subsequent steps.

Step 3-4. A random corner from {top, bottom,

left, right} is selected for alignment. For instance:

¢ If the bottom corner is chosen, the lowest corner of the
base point cloud is aligned with the highest corner of the
novel point cloud.

* Conversely, if the left corner is selected, the leftmost cor-
ner of the base point cloud is aligned with the rightmost
corner of the novel point cloud.

This pairing strategy introduces diversity in the place-
ment of novel objects while ensuring the preservation of

contextual integrity. Based on the selected corner pair, a
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translation vector is computed to spatially align the novel
sample with the base point cloud.

Step 5-6.  The computed translation vector is applied to
the cropped novel point cloud, ensuring that it is positioned
next to the base point cloud in the XY plane.

Additionally, Z-axis alignment is performed by adjust-
ing the Z-coordinates of the translated novel point cloud.
This step ensures that the novel sample is grounded at the
same level as the base point cloud, preventing it from float-
ing above or sinking below the base scene.

Step 7. Finally, the aligned novel sample is merged
with the base point cloud to form the mixed training input.
This effectively integrates the novel sample into the training
scene while retaining its original context, which helps the
model recognize complex and challenging novel classes.

We provide additional visualizations of the outputs from
our Novel-Base Mix in Fig. 1.

2. Additional Details on the new Benchmarks

As discussed in Sec.5.1, we leverage two recent datasets,
ScanNet200 [4] and ScanNet++ [8], to construct compre-
hensive evaluation benchmarks for GFS-PCS.

ScanNet200 [4] extends the labeling space of Scan-
Net [1] from 20 to 200 categories, introducing finer-grained
subclasses of existing categories and numerous novel object
types. These expansions enhance the dataset’s granularity
and diversity, making it a valuable resource for evaluating
GFS-PCS methods. Meanwhile, ScanNet++ [8] offers an-
notations for 460 scenes encompassing over 1,000 unique
object classes. This dataset captures a broad range of ob-
ject categories, reflecting the complexity and variability of
real-world environments. Together, these datasets form a
rich and diverse foundation for constructing robust GFS-
PCS evaluation benchmarks.



Algorithm 1: Pseudo-code of Novel-Base Mix in Py-
Torch style.
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# returning a dictionary with keys: [’top’, ’bottom’,
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# Step 1: Crop the novel point cloud based on the mask

novel_local, novel_local_mask = crop_fn(novel_cloud,
novel_mask)

# Step 2: Compute corner points for both point clouds

base_corners = corner_fn (base_cloud)

novel_corners = corner_fn(novel_local)

# Step 3: Randomly select a corner for alignment

selected_corner = random_corner ([’bottom’, ’'top’, '
left’, ’'right’])

culate the translation vector based on
d corners

if selected_corner == "bottom":
base_point = base_corners[’bottom’] # Lowest point
of base cloud in Y
novel_point = novel_corners[’top’] # Highest point
of novel cloud in Y
elif selected_corner == "top":
base_point = base_corners[’/top’] # Highest point of
base cloud in Y
novel_point = novel_corners[’bottom’] # Lowest
point of novel cloud in Y
elif selected_corner == "left":
base_point = base_corners[’left’] # Leftmost point
of base cloud in X
novel_point = novel_corners[’right’] # Rightmost
point of novel cloud in X
else: # "right"
base_point = base_corners[’/right’] # Rightmost
point of base cloud in X
novel_point = novel_corners[’left’] # Leftmost

point of novel cloud in X

translation_vector = [base_point[0] - novel_point[0],
base_point[1l] - novel_point[1]
0] # No z-translation yet

# Step 5: Translate the novel cloud in the XY plane
novel_local_translated = novel_local +
translation_vector

# Step 6: Align the z-coordinates

z_adjustment = min(base_cloud[:, 2]) - min(
novel_local_translated[:, 2])

novel_local_translated[:, 2] += z_adjustment

>p 7: Combine base cloud and translated novel

cloud

mixed_cloud = torch.cat ([base_cloud,
novel_local_translated], dim=0)

Benchmark Design.  To create meaningful and represen-
tative GFS-PCS benchmarks, we carefully selected classes
based on their occurrence counts in the respective datasets,
ensuring sufficient representation across scenes. The selec-
tion process involved computing the occurrence count of
each class across the dataset, ranking the classes by their
occurrence counts, and assigning them to base and novel

sets as follows:

* ScanNet200: Classes with occurrence counts exceeding
100 were retained, yielding 57 classes in total. The 12
most frequently occurring classes were designated as base
classes, while the remaining 45 were assigned as novel
classes.

» ScanNet++: Classes with occurrence counts exceeding 80
were retained, resulting in 30 classes in total. The top 12
most frequent classes formed the base class set, while the
remaining 18 were assigned as novel classes.

These frequency thresholds were carefully chosen to
strike a balance between class diversity and adequate rep-
resentation, ensuring that both base and novel classes are
well-suited for evaluating GFS-PCS performance.

Benchmark Classes. The following are the specific class
lists for the two benchmarks:

¢ ScanNet200:

— Base Classes: [‘refrigerator’, ‘desk’, ‘curtain’,
‘bookshelf’, ‘bed’, ‘table’, ‘window’, ‘cabinet’, ‘door’,
‘chair’, ‘floor’, ‘wall’]

— Novel Classes: [‘trash can’, ‘ceiling’, ‘door-
frame’, ‘object’, ‘shelf’, ‘sink’, ‘picture’, ‘backpack’,
‘couch’, ‘box’, ‘pillow’, ‘radiator’, ‘mirror’, ‘white-
board’, ‘lamp’, ‘toilet’, ‘book’, ‘monitor’, ‘towel’, ‘tv’,
‘clothes’, ‘coffee table’, ‘office chair’, ‘nightstand’,
‘bag’, ‘dresser’, ‘toilet paper’, ‘recycling bin’, ‘kitchen
cabinet’, ‘bathtub’, ‘telephone’, ‘plant’, ‘stool’, ‘key-
board’, ‘shoe’, ‘jacket’, ‘shower curtain’, ‘armchair’,
‘microwave’, ‘computer tower’, ‘bathroom vanity’,
‘kitchen counter’, ‘shower wall’, ‘paper towel dis-
penser’, ‘file cabinet’]

e ScanNet++:

— Base Classes: [‘wall’, ‘floor’, ‘door’, ‘ceiling’,
‘table’, ‘window’, ‘box’, ‘ceiling lamp’, ‘light switch’,
‘cabinet’, ‘chair’, ‘heater’]

— Novel Classes: [‘monitor’, ‘whiteboard’, ‘of-
fice chair’, ‘bottle’, ‘doorframe’, ‘keyboard’, ‘window
frame’, ‘mouse’, ‘paper’, ‘blinds’, ‘trash can’, ‘tele-
phone’, ‘book’, ‘shelf’, ‘sink’, ‘windowsill’, ‘bag’,
‘smoke detector’]

Overall, our benchmarks provide a more robust and com-
prehensive testbed for evaluating GFS-PCS methods. By
better reflecting real-world challenges, our benchmarks en-
able researchers to rigorously assess models’ performance
and generalization to novel categories under realistic sce-
narios.

3. Additional Implementation Details

Our framework employs a straightforward segmentor con-
sisting of a backbone and a linear classification head, de-
signed for both efficiency and simplicity to facilitate re-
producibility. The training process consists of two stages:
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Figure 1. Visualization of the outputs from the proposed Novel-Base Mix. The red and green boxes represent the two novel samples mixed

into the scene. The novel class colors are shown at the top.

pretraining on the base classes of each dataset, followed
by fine-tuning with adding a separate linear classification
head for novel classes. For prompting the 3D VLMs, we
adopt the default prompt used in RegionPL.C [7] and Open-
Scene [3]: “a CLASS_NAME in a scene”. We evaluate two
widely used backbones in our experiments: Point Trans-
former V3 (PTv3) [5] and SparseConvNet (SCN) [2]. All
experiments were conducted using 4 NVIDIA RTX 4090
GPUs.

For pretraining, we adhere to the default configurations
provided in [5]. When using PTv3 as the backbone, the
model is trained for 800 epochs with the AdamW optimizer.
The learning rate is set to 0.006, with a reduced learning
rate of 0.0006 for the backbone blocks, and a weight de-
cay of 0.05. The OneCycleLR scheduler is employed to ad-
just the learning rate during training. When using SCN as
the backbone, the model is trained for 600 epochs on Scan-
Net200 and 800 epochs on ScanNet++ and ScanNet. The
SGD optimizer is employed, with a learning rate of 0.05
and a weight decay of 0.0001. Similar to PTv3, the learning
rate is scheduled using the OneCycleLR strategy.

For fine-tuning, the network is trained for 20 epochs end-
to-end with the Adam optimizer. A constant learning rate is
used, with a value of 0.001 for ScanNet200 and ScanNet,
and 0.007 for ScanNet++. The backbone learning rate is
reduced by a factor of 0.1 to stabilize training.

During training, the preprocessing follows the steps out-
lined in [5]. The raw input points are voxelized using a grid
size of 0.02m, and a random cropping operation is applied
to ensure that the number of points in each training input
remains within a maximum limit, such as 102,400 points.

In the evaluation phase, the input point clouds only un-
dergo voxelization without any further cropping or sam-
pling operations. This enables testing on full scenes, as

opposed to small blocks used in previous GFS-PCS evalua-
tions [6, 9]. By evaluating on entire scenes, it better simu-
lates real-world scenarios and provides a more realistic and
comprehensive assessment of models’ performance.

4. Additional Visualizations

In this section, we present additional qualitative results to
further illustrate the efficacy of our approach in addressing
GFS-PCS tasks. These results highlight the superiority of
our model in novel class generalization and segmentation
quality, providing deeper insights into the design and impact
of our proposed modules.

Comparison with State-of-the-Art Methods.  Figure 2
showcases additional segmentation results comparing our
proposed framework, GFS-VL, against the previously es-
tablished state-of-the-art method, GW [6], on the Scan-
Net200 [4] benchmark. For clarity, class colors used in the
visualizations are displayed on the right side of the figure
and are restricted to those present in the ground truth.

These visualizations clearly demonstrate the superior
performance of GFS-VL, which effectively integrates dense
semantic knowledge embedded in 3D VLMs with pre-
cise guidance from few-shot samples. This synergy en-
ables GFS-VL to achieve robust novel class generalization
in the challenging benchmarks. The qualitative results high-
light improved boundary delineation, more accurate seg-
mentation of novel objects, and a better overall alignment
with ground truth.

Despite achieving better performance, Figure 2 also ex-
poses some limitations. Specifically, our model exhibits
suboptimal performance on small objects (e.g., Trash Can
in the third row), thin objects (e.g., Curtain in the third
row), and objects within complex backgrounds (e.g., Bath-



room Vanity in the first row). Addressing these challenges
presents promising directions for future work.

Improvements in Pseudo-label Quality. In Figure 3, we

provide additional visualizations of the refinement process

for raw pseudo-labels, illustrating the role of our Pseudo-
label Selection (PS) and Adaptive Infilling (AI) modules.

* PS filters noisy predictions from the 3D VLM by anchor-
ing them to the accurate few-shot samples, ensuring high
reliability.

* Al discovers novel objects that were initially missed in
the raw pseudo-labels, as indicated in the red circles in
Figure 3, and completes partially segmented regions, as
shown in the green circles.

By integrating few-shot support samples with the cur-
rent pseudo-label context, the Al module creates adaptive
prototypes that facilitate both the discovery of missed novel
objects and the completion of partial pseudo-labels, thereby
enhancing the quality of novel region labels. Together, PS
and Al play distinct yet complementary roles in pseudo-
label refinement. By combining dense knowledge from 3D
VLMs with the precision of few-shot samples, these mod-
ules significantly improve pseudo-label quality, achieving
better alignment with the full-class ground truth.

For visualization, the class colors in Figure 3 are dis-
played at the top and correspond to labels present in the
full-class annotations.
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Figure 2. Qualitative comparison between GW [6] and our GFS-VL on ScanNet200. The visualizations demonstrate the superior
segmentation performance and novel class generalization capabilities of GFS-VL. For clarity, class colors are displayed on the right and
are restricted to those present in the ground truth annotations.
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Figure 3. Visualization of pseudo-label refinement using Pseudo-label Selection (PS) and Adaptive Infilling (AI). Red circles indi-
cate novel objects discovered by Al that were missed in the raw pseudo-labels, while green circles indicate regions where Al completes
previously partially segmented areas. For clarity, class colors are displayed at the top and correspond to labels present in the full class
annotations.



	Additional Details on Novel-Base Mix
	Additional Details on the new Benchmarks
	Additional Implementation Details
	Additional Visualizations

