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Abstract

In this supplementary, we provide more detailed infor-
mation for DOTS, including:

• Detailed experimental settings.
• Discussion about the operation search.
• Visualization of the searched cells.

1. Detailed Experimental Settings

CIFAR. The whole search process on CIFAR10/100
takes 70 epochs, i.e., 30 epochs for the operation search and
40 for the topology search. We pretrain network weights in
the first half epochs for both stages by only updating net-
work weights. The network is composed of 8 cells for the
operation search and 20 cells for the topology search. The
SGD optimizer is adopted to optimize the network weight
w with an initial learning rate of 0.025 (cosine decaying to
0.001 in 70 epochs), weight decay of 3e-4, and momen-
tum of 0.9. For updating the operation weight α and edge
combination weight β, we use the Adam optimizer with a
constant learning rate of 1e-4 and weight decay of 1e-3. We
set the initial temperature T0 = 10 and decay rate θ = 0.72
for annealing the edge combination weight in the topology
search.

ImageNet. We randomly sample 10% and 2.5% images
from ImageNet to build the training and validation set, fol-
lowing PC-DARTS [16]. The search schedule of ImageNet
follows CIFAR experiment. The SGD optimizer is used to
optimize the network weight w with an initial learning rate
of 0.25 (cosine decaying to 1e-2 in 70 epochs), weight de-
cay of 3e-4, and momentum of 0.9. The batch size of SGD
is set to 512. For updating the operation weight α and edge
combination weight β, we use the Adam optimizer with a
constant learning rate of 3e-3 and weight decay of 1e-3 for
both stages. We set the initial temperature T0 = 10 and
decay rate θ = 0.72 for annealing the edge combination
weight in the topology search.

2. Discussion about the Operation Search
DOTS introduces two operation search strategies, i.e.,

1) incorporating existing gradient-based methods, and 2)
searching from scratch using the group strategy. The first
strategy suffers from inheriting instability in gradient-based
methods [4, 2], and thus the retained operations may be sub-
optimal. Furthermore, the first strategy ignores that some
operations are related to the topology, which is better to
make them involved in the topology search. Recent research
[3] reveals that the Skip-Connection operation severs two
roles: 1) an operation in the cell and 2) a connection to sta-
bilize the network. The latter role makes skip-connection
related to the network topology. The Zero operation is
proposed in DARTS [13] to scale edge importance in the
search stage, which is also related to the network topology.
Pruning these topology-related operations in the operation
search phase eliminates the potential topology choices in
the topology search.

The second strategy, i.e., the operation search with the
group strategy, helps stabilize the operation search and pre-
serve more potential topology choices. We have compared
two group strategies in the manuscript, i.e., Group-V1 strat-
egy and Group-V2 strategy. The Group-V1 strategy [10]
considers the multicollinearity of similar operations by di-
viding operations into four groups:

• Group1: Skip-Connection
• Group2: Max-Pooling, Avg-Pooling
• Group3: SepConv3×3, SepConv5×5
• Group4: DilConv3×3, DilConv5×5

The Group-V2 strategy [8] considers the Matthew Effect in
the operation search. Specifically, the operations with learn-
able parameters are under-performing at the beginning of
the search and thus be punished by lowering their impor-
tance. The lower importance makes these operations up-
date slower, resulting in even smaller importance. Hence,
the Group-V2 strategy divides operations into two groups
based on whether they have learnable parameters:

• Group1: Zero, Skip-Connection, Max-Pooling, Avg-
Pooling
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Figure 1: Visualization of the best searched cells of DOTS.

Backbone #Param (M) FLOPs (M) AP AP50 AP75 APS APM APL

ResNet-50 [7] 25.6 4120 0.363 0.553 0.386 0.193 0.400 0.488
MobileNet-V2 [14] 3.4 300 0.283 0.467 0.293 0.148 0.307 0.381
SinglePath NAS [6] 4.3 365 0.307 0.498 0.322 0.154 0.339 0.416
MobileNet-V3 [9] 5.4 219 0.299 0.493 0.308 0.149 0.333 0.411
MnasNet [15] 4.8 340 0.305 0.502 0.320 0.166 0.341 0.411
FairDARTSC [4] 5.0 386 0.319 0.519 0.330 0.174 0.353 0.430
DOTS 5.3 596 0.357 0.552 0.378 0.199 0.393 0.478

Table 1: Evaluation of object detection on the MS-COCO 2017 dataset [12].

Backbone #Param FLOPs mIOU(%)
(M) (G) val test

ResNet-18 14.1 20.1 74.8 74.7
Xception-39 1.9 4.1 69.0 68.4
MnasNet 6.8 11.0 76.8 74.2
DOTS 8.0 12.9 79.3 77.6

Table 2: Evaluation of semantic image segmentation on the
Cityscapes dataset [5].

• Group2: SepConv3×3, SepConv5×5, DilConv3×3,
DilConv5×5

In this paper, the Group-V2 strategy helps avoid the
Matthew Effect and preserve more potential topology
choices for the topology search. Therefore, DOTS uses the

Group-V2 strategy as the default operation search method.

3. Applications
We apply the architecture searched by DOTS to object

detection and semantic segmentation to validate its perfor-
mance. We use the architecture searched on ImageNet as a
drop-in replacement of the backbone of the baseline meth-
ods [11, 17]. Here, we compare with several manually-
designed and automatically-searched mobile backbones.

Object Detection. The object detection benchmark is
based on RetinaNet [11]. We use the MMDetection tool-
box [1] for a fair comparison to [4]. All models are trained
and evaluated on MS-COCO 2017 dataset [12] with the



same settings as [4]. The results are summarized in Tab. 1.
The proposed DOTS outperforms FairDARTSC [4] by 3.8%
in terms of AP. DOTS has comparable performance to
ResNet-50 with only 20.7% parameters and 14.5% FLOPs
of ResNet-50.

Semantic Segmentation. The semantic segmentation
benchmark is based on BiSeNet [17]. All models are trained
and evaluated on the Cityscape dataset [5] with default set-
tings in [17], respectively. We do not employ any compli-
cated testing techniques, like multi-scale or multi-crop test-
ing. From Tab. 2, we can observe that DOTS has a clear
advantage over previous mobile backbones in lightweight
semantic segmentation.

4. Visualization
We visualize the best searched cells of DOTS in Fig. 1.
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