

Beijing Engineering Research Center of Mixed Reality and Advanced Display

IGTA2019

Multi-Level Context Ultra-Aggregation for Stereo Matching

Guang-Yu Nie¹, Ming-Ming Cheng², Yun Liu², Zhengfa Liang³, Deng-Ping Fan², Yue Liu^{1,4}, and Yongtian Wang^{1,4}

¹ Beijing Institute of Technology
 ² TKLNDST, CS, Nankai University
 ³ National Key Laboratory of Science and Technology on Blind Signal Processing
 ⁴ AICFVE, Beijing Film Academy

Depth from Stereo What is stereo?

Depth from images is a very intuitive ability

• Given two images of a scene from (slightly) different viewpoints, we are able to infer depth

Can we do the same using computers?

• Yes

IGTA2019

Source: http://www.vudream.com/reasons-why-virtual-reality-is-happening-now/3d-brain/

- Think of images as projections of 3D points (in the real world) onto a 2D surface (image plane)
- X_A is the projection of X, X_1 , X_2 , X_3 , onto the left image
- X, X_1 , X_2 , X_3 will also project onto the right image

IGTA2019

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry." (2013).

- Projections of X₁, X₂, X₃ on right image all lie on a line
- This line is known as an **epipolar line**

IGTA2019

- Projections of cameras' optical centers
 O_A, O_B onto the images
- > Points e_A , e_B are known as **epipoles**
- > All epipolar lines will intersect at epipoles
- Left image has corresponding epipolar line

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry." (2013).

What does this give us?

IGTA2019

- All 3D points that could have resulted in X_A must have a projection on the right image, and must be on the epipolar line $e_B x_B$
- Given just the left/right images and X_A, you can search on the corresponding epipolar line in the right image. If you can find the corresponding match X_B, you can uniquely determine the 3D position of X.

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry." (2013).

- Epipolar lines can be made parallel through a process called **rectification**
- Simplifies the process of finding a match and calculating the 3D point

IGTA2019

Source: https://www.ivs.auckland.ac.nz/web/calibration.php http://web.stanford.edu/class/cs231a/lectures/lecture6_stereo_systems.pdf

(1)

Problem statement, reformulated:

Depth from Stereo Geometry in stereo

Find the disparity for every pixel in the left (or right) image by finding matches in the right (or left) image

disparity =
$$x - x' = \frac{Bf}{Z}$$
 $\frac{x - x'}{O - O'} = \frac{f}{Z}$

Source: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html

Related Research Basic stereo matching algorithm

- 1. If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- 2. For each pixel x in the first image:
- Find corresponding epipolar scanline in the right image
- Search the scanline and pick the best match x'
- Compute disparity x-x' and set depth(x) = Bf/(x-x')

Correspondence search

IGTA2019

Related Research Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Related Research Learning-Based Stereo Matching

End-to-end training network

Related Research GC-Net by Kendall et al.

End-to-End Learning of Geometry and Context for Deep Stereo Regression (ICCV'17)

Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).

Related Research PSM-Net by Chang et al.

Pyramid Stereo Matching Network (CVPR'18)

IGTA2019

Related Research Learning-Based Stereo Matching

End-to-end training network

Related Research Different aggregation patterns

IGTA2019

IGTA2019

MCUA Dense Connection

MCUA Dense Connection

MCUA

 1×1

IGTA2019

W_1 H 2H Receptive Field

Capture more area

2W

IGTA2019

MCUA Stereo Matching

EMCUA Stereo Matching

Experiment Datasets

Scene Flow dataset: FlyingThings3D, Driving, Monkaa

>39000(35454/4370 train/test) stereo frames 960×540 pixel resolution

IGTA2019

Source: https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo

Disparity map (Ground truth)

KITTI2015: 200/200 train/test stereo images KITTI2012: 194/200 train/test stereo images 1242×375 pixel resolution

Experiment Implementation Details

Train on a lot of data:

- Scene Flow datasets
- Finetuning on KITTI

Test on Flying Things and KITTI

Input: 256×512 pixel resolution

Optimizer: Adam

The training process of EMCUA contains two steps:

• Train MCUA:

20+50 epochs on SF dataset (Ir=0.01) 600 (Ir=0.001) + 400 (Ir=0.0001) epochs on KITTI datasets

• Train EMCUA (+ Residual module)

1 epoch on SF dataset (lr=0.01) 600 (lr=0.001) + 400 (lr=0.0001) epochs on KITTI datasets

Performance KITTI2015 dataset

Table 2. KITTI2015 Results

Mod.		All (%)		Noc (%)			
	D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1-all	
SegStereo	1.88	4.07	2.25	1.76	3.70	2.08	
iResNet	2.25	3.40	2.44	2.07	2.76	2.19	
CRL	2.48	3.59	2.67	2.32	3.12	2.45	
GC-Net [9]	2.21	6.16	2.87	2.02	5.58	2.61	
PSM-Net	1.86	4.62	2.32	1.71	4.31	2.14	
MCUA	1.69	4.38	2.14	1.55	3.90	1.93	
EMCUA	1.66	4.27	2.09	1.50	3.88	1.90	

"All" and "Noc" : percentage of outliers averaged over ground truth pixels of all/non-occluded regions. "D1-bg", "D1-fg", and "D1-all": percentage of outliers averaged only over background regions, foreground regions, and all ground truth pixels. Sample output

Performance KITTI2012 dataset

Table 3. KITTI2012 Results

Mod	> 2	2px	> 3	Bpx	> 4	4px	> 5	δpx	ME	(px)
	Noc	All	Noc	All	Noc	All	Noc	All	AN	AA
SegStereo iResNet GC-Net	2.66 2.69 2.71	3.19 3.34 3.46	1.68 1.71 1.77	2.03 2.16 2.30	1.25 1.30 1.36	1.52 1.63 1.77	1.00 1.06 1.12	1.21 1.32 1.46	0.5 0.5 0.6	0.6 0.6 0.7
PSM-net MCUA	2.44 2.07	3.01 2.64	1.49 1.30	1.89 1.70	1.12 0.98	1.42 1.29	0.90 0.80	1.15 1.04	0.5 0.5	0.6 0.5
EMCUA	2.02	2.56	1.26	1.64	0.95	1.24	0.76	0.99	0.4	0.5

"Noc" and "All": percentage of erroneous pixels in non-occluded areas, and in total. "AN" and "AA": average disparity/end-point error in non-occluded areas, and in total. "ME": mean error.

IGTA2019

Sample output

(a) EMCUA

Performance Residual Module

Mod		All (%)		Noc (%)			
	D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1-all	
SegStereo	1.88	4.07	2.25	1.76	3.70	2.08	
iResNet	2.25	3.40	2.44	2.07	2.76	2.19	
CRL	2.48	3.59	2.67	2.32	3.12	2.45	
GC-Net [9]	2.21	6.16	2.87	2.02	5.58	2.61	
PSM-Net	1.86	4.62	2.32	1.71	4.31	2.14	
MCUA	1.69	4.38	2.14	1.55	3.90	1.93	
EMCUA	1.66	4.27	2.09	1.50	3.88	1.90	

Table 2. KITTI2015 Results

"All" and "Noc" : percentage of outliers averaged over ground truth pixels of all/non-occluded regions. "D1-bg", "D1-fg", and "D1-all": percentage of outliers averaged only over background regions, foreground regions, and all ground truth pixels. Table 3. KITTI2012 Results

Mod	>2	2px	>3	Bpx	> 4	4px	>5	δpx	ME	(px)
	Noc	All	Noc	All	Noc	All	Noc	All	AN	AA
SegStereo	2.66	3.19	1.68	2.03	1.25	1.52	1.00	1.21	0.5	0.6
iResNet	2.69	3.34	1.71	2.16	1.30	1.63	1.06	1.32	0.5	0.6
GC-Net	2.71	3.46	1.77	2.30	1.36	1.77	1.12	1.46	0.6	0.7
PSM-net	2.44	3.01	1.49	1.89	1.12	1.42	0.90	1.15	0.5	0.6
MCUA	2.07	2.64	1.30	1.70	0.98	1.29	0.80	1.04	0.5	0.5
EMCUA	2.02	2.56	1.26	1.64	0.95	1.24	0.76	0.99	0.4	0.5

"Noc" and "All": percentage of erroneous pixels in non-occluded areas, and in total. "AN" and "AA": average disparity/end-point error in non-occluded areas, and in total. "ME": mean error.

Residual module is mainly used to improve the performance of the accuracy of the foreground. IGTA2019

Performance Scene Flow Datasets

Table 4. Performance comparison on Scene Flow test set

Mod.	EPE	Mod.	EPE	Mod.	EPE
MCUA	0.56	PSM-Net [2]	1.09	StereoNet [10]	1.10
CRL. [18]	1.32	iResNet [11]	1.40	SegStereo [24]	1.45

Sample output

Inputs IGTA2019

Mod.: model; EPE: end-point-error;

Ground truth

MCUA

Different aggregation schemes

- Dense connection
- Deep Layer Aggregation

MCUA

Mod.		Scene	Flow		KITTI2015	Para.
	> 1px	> 3px	> 5px	EPE	VE (%)	
	Con	npare of	aggrega	tion pat	terns	
PSM-Net	_	_	_	1.119	1.83	5.22M
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M
DLA	8.586	3.337	2.280	0.806	1.685	5.32M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M
	Comp	are of ar	chitectu	re comp	onents	
UChi	8.185	3.153	2.147	0.755	1.635	5.39M
Chi	8.133	3.242	2.226	0.777	1.642	5.29M
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M

Table 5. Ablation study

Effect of MCUA

Mod.		Scene	Flow		KITTI2015	Para.
1110 41	> 1px	> 3px	> 5px	EPE	VE (%)	1 urui
	Con	npare of	aggrega	tion pat	terns	
PSM-Net	_	_	_	1.119	1.83	5.22M
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M
DLA	8.586	3.337	2.280	0.806	1.685	5.32M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M
	Comp	are of ar	chitectu	re comp	onents	
UChi	8.185	3.153	2.147	0.755	1.635	5.39M
Chi	8.133	3.242	2.226	0.777	1.642	5.29M
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M

Table 5. Ablation study

Effect of MCUA

Mod.		Scene	Flow		KITTI2015	Para.
1100	> 1px	> 3px	> 5px	EPE	VE (%)	1 urui
	Con	npare of	aggrega	tion pat	terns	
PSM-Net	_	_	_	1.119	1.83	5.22M
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M
DLA	8.586	3.337	2.280	0.806	1.685	5.32M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M
	Comp	are of ar	chitectu	re comp	oonents	
UChi	8.185	3.153	2.147	0.755	1.635	5.39M
Chi	8.133	3.242	2.226	0.777	1.642	5.29M
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M

Table 5. Ablation study

Effect of MCUA

Mod.		Scene	Flow		KITTI2015	Para.
	> 1px	> 3px	> 5px	EPE	VE (%)	1 urui
	Con	npare of	aggrega	tion pat	terns	
PSM-Net	_	_	_	1.119	1.83	5.22M
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M
DLA	8.586	3.337	2.280	0.806	1.685	5.32M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M
	Comp	are of ar	chitectu	re comp	onents	
UChi	8.185	3.153	2.147	0.755	1.635	5.39M
Chi	8.133	3.242	2.226	0.777	1.642	5.29M
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M

Table 5. Ablation study

Effect of MCUA

Table 5. Ablation study								
Mod.		Scene	Flow		KITTI2015	Para.		
11100	> 1px	> 3px	> 5px	EPE	VE (%)	1 urui		
	Con	pare of	aggregat	tion pat	terns			
PSM-Net	_	_	_	1.119	1.83	5.22M		
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M		
DLA	8.586	3.337	2.280	0.806	1.685	5.32M		
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M		
	Compa	are of ar	chitectu	re comp	oonents			
UChi	8.185	3.153	2.147	0.755	1.635	5.39M		
Chi	8.133	3.242	2.226	0.777	1.642	5.29M		
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M		
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M		

Conclusion

- We propose a general feature aggregation scheme, MCUA, which contains both intra- and inter-level feature aggregation, while DenseNets and DLA contain only intra-level aggregation.
- We use an independent child module to introduce inter-level aggregation, which enlarges the receptive fields and captures more context information.

Future work

- Dataset bias (Stereo matching Depth estimation)
- Real-time stereo matching

Future work Datasets

Scene Flow dataset: FlyingThings3D, Driving, Monkaa

>39000(35454/4370 train/test) stereo frames 960×540 pixel resolution

IGTA2019

Source: https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo

Disparity map (Ground truth)

KITTI2015: 200/200 train/test stereo images KITTI2012: 194/200 train/test stereo images 1242×375 pixel resolution

Future work

IGTA2019

- Dataset bias (Stereo matching Depth estimation)
- Real-time stereo matching

Matching cost: SSD, SAD, or normalized correlation $SSD(x,y,d) = \sum_{(x,y)\in W} |I_{I}(x,y) - I_{r}(x-d,y)|^{2}$

Source: A. Fusiello, U. Castellani, and V. Murino, "Relaxing symmetric multiple windows stereo using Markov Random Fields," in Computer Vision and Pattern Recognition, vol. 2134 of Lecture Notes in Computer Science, pp. 91–105, Springer, 2001.

Correspondence search

Future work

IGTA2019

- Dataset bias (Stereo matching Depth estimation)
- Real-time stereo matching

StereoNet architecture (ECCV'18)

Source: Khamis, Sameh, et al. "Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Qualitative results on the FlyingThings3D test set

Beijing Engineering Research Center of Mixed Reality and Advanced Display

Thanks for your watching.

daj gazaa

lano

an na na n

Beijing Engineering Research Center of Mixed Reality and Advanced Display

Q&A

Guang-Yu Nie

IGTA2019

04/19-20/2019

0

guyuneeee@outlook.com

